Convenient syntheses of chiral 3-substituted 2-ethynylaziridines

Hiroaki Ohno, Ayako Toda, Yoshiji Takemoto, Nobutaka Fujii and Toshiro Ibuka *
Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan

Received (in Cambridge, UK) 23rd June 1999, Accepted 26th August 1999

Two convenient methods for the synthesis of chiral 2-ethynylaziridines from natural α-amino acids are described. Sodium hydride-promoted aziridination of mesylates of 4-arylsulfonylamino-2-bromoalk-2-en-1-ols yields trans-2-(1-bromovinyl)aziridines in a highly stereoselective manner, and subsequent dehydrobromination of the aziridines by potassium tert-butoxide gives separable stereoisomeric mixtures of trans- and cis-2-ethynylaziridines in enantiomerically pure forms ($>98 \%$ ee). Simple synthesis of 2-ethynylaziridines with high optical purities
($91-98 \%$ ee) from chiral amino alcohols bearing an ethynyl group under Mitsunobu conditions is also presented.
Activated aziridines constitute an interesting class of compounds because of their high electrophilicity enabling them to undergo ring-opening reactions with a wide variety of nucleophiles in a stereoselective manner. ${ }^{1,2}$ Particularly, activated or unactivated aziridines bearing an alkenyl group on one of the aziridine-ring carbon atoms have proven to be extremely valuable intermediates. Alkenylaziridines function as useful substrates for such carbon-carbon bond-forming reactions as the organocopper-mediated $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reaction, ${ }^{3}$ aza-2,3-Wittig rearrangement, ${ }^{4}$ palladium(0)-catalyzed carbonylation, ${ }^{5}$ and thermal pyrrolysis. ${ }^{6}$ These reactions provide efficient synthetic routes to (E)-alkene dipeptide isosteres, ${ }^{3 a-d}$ allylamines, ${ }^{3 e, f}$ indolizidine alkaloids, ${ }^{4 b, c} \quad \beta$-lactams, ${ }^{5}$ and pyrrolizidine alkaloids. ${ }^{6}$ However, relatively little investigation
 has been undertaken on the synthesis and reactivity of 2-ethynylaziridines, although these compounds could serve as potentially useful building blocks for the stereoselective synthesis of allenes or alkynes bearing an amino group. Recently, Dai and co-workers have reported the synthesis of racemic 2-ethynylaziridines by the reaction of N-tosylimines with sulfonium ylide. ${ }^{7 a}$ They also reported an asymmetric version of this reaction in moderate to good enantioselectivities ($14-85 \%$ ee) by use of $\mathrm{D}-(+)$-camphor-derived sulfonium ylide. ${ }^{7 b, c}$

As part of an ongoing program aimed at the stereoselective synthesis and reaction of chiral amino allenes, ${ }^{8,9}$ we required a reliable and efficient method for synthesizing 2-ethynylaziridines with high optical purity. ${ }^{10}$

Based on our recent successful results on the efficient and stereoselective synthesis of trans-2-alkenylaziridines of the type 2 from mesylates of N-protected (E)-4-amino-2-alkylalk-2-en1 -ols like 1 by treatment with sodium hydride in DMF, ${ }^{11}$ it was our expectation to be able to synthesize 2-alkynylaziridines 6 via intermediates $\mathbf{4}$ and 5 in a stereoselective manner starting from readily available N-protected amino alcohols 3 as shown in Scheme 1. In principle, reaction of the bromo mesylate 4 with bases such as sodium hydride and potassium hydride could afford trans-2-(1-bromoethenyl)aziridine 5 predominantly or exclusively. Subsequent dehydrobromination of 5 with such bases as potassium tert-butoxide would produce the target alkynylaziridine 6. In this paper we detail a synthetic method for the preparation of enantiopure 2-alkynylaziridines based on the above-described chemistry. ${ }^{10}$ In addition, a simple and convenient synthesis of 2-ethynylaziridines from N-protected 4-aminoalk-1-yn-3-ols following the Mitsunobu procedure is also presented.

Scheme 1

Results and discussion

1. Synthesis of the mesylates of brominated allylic alcohols

For the synthesis of alkynylaziridines, an efficient preparative method for allylic mesylates bearing a bromo group on the double bond is required as synthetic intermediates. As shown in Scheme 2, the requisite chiral mesylates (11, 17, 25, and 26) of the corresponding N-arylsulfonylamino alcohols (10, 16, 23, and 24) were prepared in acceptable yields starting from the N protected amino alcohols (7, 12, and 18) which were readily available from natural (S)- α-amino acids. ${ }^{12}$

Typically, (S)- N-arylsulfonyl valinol 7 was treated successively with oxalyl chloride-DMSO- N, N-diisopropylethylamine and the bromo-ylide $\left[\mathrm{Ph}_{3} \mathrm{P}=\mathrm{C}(\mathrm{Br}) \mathrm{CO}_{2} \mathrm{Me}\right]^{13}$ to afford a $74: 13$ mixture of the (Z) - and (E)-enoates $\mathbf{8}$ and $\mathbf{9}$ in 87% combined yield which were separated by flash chromatography. Reduction of the (Z)-enoate $\mathbf{8}$ with DIBAL-H yielded the allylic alcohol $\mathbf{1 0}$, which can be readily converted into the mesylate $\mathbf{1 1}$ following the standard procedure. In a similar manner, the allylic mesylates 17 and ($\mathbf{2 5}$ and 26) were readily prepared from the corresponding N-protected amino alcohols 12 and 18.

Configurational assignments of the double bond geometry in α, β-unsaturated esters of type $\mathbf{8}$ and $\mathbf{9}$ were rather difficult. However, it turned out that the determination of configurations can be readily done by the use of allylic alcohols or their mesylates. For example, irradiation of the signals of the vinylic proton at $\delta 5.91(\mathrm{Hb}$ in structure $\mathbf{1 0})$ led to a $1.6 \% \mathrm{NOE}$ enhancement of the signals of one of the methylene protons at $\delta 4.21$ (Ha in structure 10). In contrast, no NOE enhancement

Scheme 2 Reagents: i, $(\mathrm{COCl})_{2}-\mathrm{DMSO}-(i-\mathrm{Pr})_{2} \mathrm{NEt}$; ii, $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{C}(\mathrm{Br})$ $\mathrm{CO}_{2} \mathrm{Me}$; iii, DIBAL; iv, $\mathrm{MeSO}_{2} \mathrm{Cl}-\mathrm{Et}_{3} \mathrm{~N}$; v, TFA, then $\mathrm{TsCl}-\mathrm{Et}_{3} \mathrm{~N}$; vi, TFA, then $\mathrm{MtsCl}-\mathrm{Et}_{3} \mathrm{~N}$; vii, TFA, then $\mathrm{MtrCl}-\mathrm{Et}_{3} \mathrm{~N}$. Abbreviations: Mts = 2,4,6-trimethylbenzenesulfonyl; \quad Mtr $=4$-methoxy-2,3,6-trimethylbenzenesulfonyl; Ts = p-tolylsulfonyl.
between the vinylic proton and one of the methylene protons was observed in the (E)-isomeric alcohol of $\mathbf{1 0}$. By using similar ${ }^{1} \mathrm{H}$ NMR analyses, configurational assignments for other allylic alcohols 16, 23, and 24 as well as the mesylates 17, 25, and 26 were unambiguously made.

It should be noted that the reaction of some aldehydes bearing an N-arylsulfonylamino group with the bromo-ylide [$\left.\mathrm{Ph} h_{3} \mathrm{P}=\mathrm{C}(\mathrm{Br}) \mathrm{CO}_{2} \mathrm{Me}\right]$ gave poorer results. For example, reaction of (S)-N-(2,4,6-trimethylphenylsulfonyl)phenylalaninal with the bromo-ylide gave a 97:3 inseparable mixture of (Z)- and (E)-enoate in only 28% combined yield. On the other hand, treatment of (S)- N -Boc-leucinal and (S)- N -Boc-phenylalaninal with the same bromo-ylide gave the corresponding bromo esters ($\mathbf{1 3}$ and $\mathbf{1 4}$) and ($\mathbf{1 9}$ and $\mathbf{2 0}$) in high combined yields.

2. Aziridination reaction of the N -protected amino allylic mesylates with sodium hydride

Based on the previous synthetic studies of alkenylaziridines from the corresponding allylic mesylates, ${ }^{11}$ we anticipated that 3-alkyl-2-(1-bromovinyl)aziridines of the type 27 could easily be prepared from the corresponding allylic mesylates of the type 11 (Scheme 3). However, this was not to be the case. The reaction could not be completed even after prolonged reaction time (20 h). After considerable experimentation, we found that improved yields in the aziridine ring-forming reaction could be obtained by the use of sodium hydride in DMSO or mixed solvents containing DMSO. As illustrated in Scheme 3, except for the bromo aziridine 28, other aziridines (27, 29, and 30) were obtained from the corresponding allylic mesylates (11, 25, and 26) in both acceptable yields and high diastereoselectivities. Typically, the treatment of $\mathbf{1 1}$ with sodium hydride (1.2 equiv.)

Scheme 3

Fig. 1
in DMSO at $30^{\circ} \mathrm{C}$ gave a mixture of the bromo aziridine 27 and its $c i s$-isomer. Analysis by HPLC or ${ }^{1} \mathrm{H}$ NMR indicated a 97:3 ratio of diastereomers in favor of trans-isomer 27 as expected. ${ }^{11 b}$

The stereostructure of the major aziridines (27-30) was proved to be trans by ${ }^{1} \mathrm{H}$ NMR analysis. We have previously reported that trans-2-(alk-1-enyl)aziridines show smaller $J_{\text {Hab }}$ values ($J=c a .4 .0 \mathrm{~Hz}$) than those of the $c i s$-isomers $(J=c a .7 .0$ Hz). ${ }^{11,12}$ The aziridines (27-30) show $J_{\text {Hab }}$ values of $3.8-4.3 \mathrm{~Hz}$, which indicate the configuration of these compounds is trans.

It should be clearly noted that, in all cases examined, separation of trans-2-ethynylaziridines (27-30) from the corresponding $c i s$-isomers was quite difficult. Only two trans-aziridines $\mathbf{2 8}$ and 29 could be isolated in a pure state by repeated flash chromatographic separation.

The predominant formation of trans-bromo aziridines (2730) could be rationalized considering the 1,3 -allylic strain of two aza-anionic intermediates A and B (Fig. 1). Although the ground state and the reactive conformer are not necessarily the same, the ground state conformations of various olefinic molecules containing the alkene moiety play an important role in the stereochemical outcome of π-facial selectivity. ${ }^{14}$ If the reaction conformers are as depicted in \mathbf{A} and \mathbf{B}, the higher diastereoselectivity is readily understood. Examination of the nonbonded interactions in the conformers \mathbf{A} and \mathbf{B} reveals that in conformer B, which could lead to the cis-isomer $\mathbf{3 3}$ via the $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ pathway, a substantial non-bonded interaction does exist to
destabilize this conformer. Thus, an aziridine ring-forming reaction would proceed preferentially from the more abundant conformer A to yield trans-aziridines $\mathbf{3 2}$ predominantly.

3. Dehydrobromination reaction of trans-2-(1-bromovinyl)aziridines with potassium tert-butoxide

Having synthesized the four bromo aziridines (27-30), we next investigated the dehydrobromination reaction for the synthesis of 2-ethynylaziridines.

Exposure of pure bromo aziridine 29 to t - BuOK in THF unexpectedly gave a separable $65: 35$ mixture of trans- and cisethynylaziridines 38 and 39 in 80% combined yield. Consequently, without separating the mixtures of bromo aziridines, all the trans- and cis-mixtures (trans:cis $=95-97: 5-3$) were dehydrobrominated to yield the corresponding ethynylaziridines (trans : cis $=65-77: 35-23$) in good to excellent yields. The results are listed in Scheme 4. It should be clearly noted

that, among various reaction conditions, only t-BuOK in THF gave satisfactory results. In addition, separation of the four stereoisomeric pairs of the 2-ethynylaziridines ($\mathbf{3 4}$ and 35), ($\mathbf{3 6}$ and 37), (38 and 39), and (40 and 41) was accomplished quite easily by flash chromatography.

As will be discussed later in more detail, cis- and transconfigurations of 2-ethynylaziridines were readily determined by ${ }^{1} \mathrm{H}$ NMR analysis (cis: $J_{\text {Hab }}=6.2-7.0 \mathrm{~Hz}$; trans: $J_{\text {Hab }}=3.2-$ 4.2 Hz).

The formation of cis-2-alkynylaziridines as minor products from the corresponding trans-2-(1-bromovinyl)aziridines could be rationalized in the following way. Firstly, treatment of the ethynylaziridine 34 with t-BuOK under otherwise identical reaction conditions to those of dehydrobromination $(-78 \rightarrow$ $0^{\circ} \mathrm{C}, 30 \mathrm{~min}$) resulted in complete recovery of unchanged starting material. Secondly, treatment of $\mathbf{2 7}$ with t-BuOK in THF containing 5 equiv. of t-BuOD gave a mixture of trans- and cis-2-ethynylaziridines as expected. Although no evidence was obtained of the incorporation of deuterium in the $\mathrm{C}-2$ position of trans-2-ethynylaziridine 34, it is found that $c a .10 \%$ of deuterium was incorporated at the C-2 position of cis-2 ethynylaziridine 35.

Although the details of the dehydrobromination reactions have still not been elucidated, we are working under the assumption that both paths B and C are involved as depicted in Fig. 2. If deprotonation of bromo aziridine 27 by t-BuOK occurs at the vinylic position (path C), it will produce only the trans-ethynylaziridine 34 and if it proceeds only by path B, it

Fig. 2
will generate either only trans- $\mathbf{3 4}$ or cis- $\mathbf{3 5}$ or a mixture of both via an allenic intermediate A. Considering the fact that the trans-isomer 34 was isolated as the major product, we propose that the reaction of the bromo aziridine 27 proceeds via two competitive paths B and C to yield trans- and cis-ethynylaziridines $\mathbf{3 4}$ and 35 .
Enantiopurities of all the ethynylaziridines ($\mathbf{3 4 - 4 1)}$ have been determined by HPLC with a chiral stationary phase (CHIRALCEL OD and/or OJ column; hexane:propan-2ol $=98.5-93: 1.5-7$). It was shown that all compounds were found to be essentially enantiopure (ee $>98 \%$). ${ }^{15}$

4. Synthesis of 2-ethynylaziridines under Mitsunobu conditions

We next investigated the simple synthesis of 2-ethynylaziridines from amino alcohols bearing an ethynyl group under Mitsunobu conditions.
The requisite amino alcohols ($\mathbf{4 3}, \mathbf{4 4}, \mathbf{4 6}, \mathbf{4 8}, \mathbf{4 9}$, and $\mathbf{5 0}$) were synthesized by a sequence of reactions as shown in Scheme 5. Typically, (S) - N-Boc-valinal derived from (S)- N-Boc-valinol

Scheme 5 Reagents: i, $(\mathrm{COCl})_{2}-\mathrm{DMSO}-(i-\operatorname{Pr})_{2} \mathrm{NEt}$; ii, n-BuLitrimethylsilylacetylene; iii, TFA, then $\mathrm{MtsCl}-\mathrm{Et}_{3} \mathrm{~N}$; iv, TBAF.
$42^{3 f}$ was treated with trimethylsilylacetylide to give a separable stereoisomeric mixture of amino alcohols 43 and 44 in low yields. For reasons unknown, however, the yields of products were not improved. The N-Boc protecting group in 43 and 44 can be readily replaced by the N-(2,4,6-trimethylphenylsulfonyl) (Mts) group by treatment with trifluoroacetic acid (TFA) followed by MtsCl and $\mathrm{Et}_{3} \mathrm{~N}$ to yield the corresponding products 45 and 47 in good yields. Exposure of 43, 44, 45, and 47 to tetrabutylammonium fluoride $\left(\mathrm{Bu}_{4} \mathrm{NF}\right)$ in THF afforded the desilylation products $\mathbf{4 9}, \mathbf{5 0}, \mathbf{4 6}$, and $\mathbf{4 8}$, respectively, in good to high yields (see the Experimental section).

As shown in Scheme 6, the N-Mts amino alcohols (54, 56, 57,

Scheme 6 Reagents: i, DIBAL; ii, n-BuLi-trimethylsilylacetylene; iii, TFA, then $\mathrm{MtsCl}-\mathrm{Et}_{3} \mathrm{~N}$; iv, TBDMSCl-imidazole; v, NaOMe (cat)MeOH. Abbreviations: TBDMS $=$ tert-butyldimethylsilyl.
and 59) were prepared from (S)- N-Boc-serine derivative $51{ }^{16}$ by a sequence of reactions. Thus, reduction of $\mathbf{5 1}$ with DIBAL-H followed by treatment with lithium trimethylsilylacetylide yielded a separable mixture of syn- and anti-alcohols 52 and 53. Not unexpectedly, deprotection of the N-Boc group in $\mathbf{5 2}$ with TFA followed by treatment with $\mathrm{MtsCl}-\mathrm{Et}_{3} \mathrm{~N}$ gave a $62: 17$ mixture of two products $\mathbf{5 4}$ and $\mathbf{5 5}$. The latter compound $\mathbf{5 5}$ could be readily converted into the former 54 by following the standard silylation procedure. Finally, the alcohol 56 can be obtained in high yield from 54 by selective removal of the trimethylsilyl group by exposure to a catalytic amount of sodium methoxide in MeOH . In a similar manner, the requisite ethynyl amino alcohols 57 and 59 were prepared from the anti-amino alcohol 53.

Stereostructural assignments for the synthesized diastereomeric amino alcohols ($\mathbf{4 3}$ and 44) and (52 and 53) were readily made by transformation into three sets of two stereoisomeric oxazolidinone derivatives (60 and 62), (61 and 63), (64 and 65). As can be seen from Scheme 7, the trans-oxazolidinones ($\mathbf{6 0}$, 61, and 64) show $J_{\text {Hab }}$ values ($J=1.9-5.9 \mathrm{~Hz}$) smaller than the $J_{\text {Hab }}$ values $(J=7.3-8.1 \mathrm{~Hz})$ of the corresponding cis-isomers (62, 63, and 65). The data are in good agreement with ${ }^{1} \mathrm{H}$ NMR data for related oxazolidinones. ${ }^{12,16}$

Next, we investigated aziridination reactions of ethynyl amino alcohols under Mitsunobu conditions. The results are summarized in Scheme 8 and Table 1. Typically, treatment of $\mathbf{4 3}$ with triphenylphosphine and diethyl azodicarboxylate in THF at $25^{\circ} \mathrm{C}$ for 0.5 h yielded the cis-2-ethynylaziridine 66 in 96% yield (entry 1, Table 1). In all cases, the ethynyl amino alcohols were effectively cyclized into the corresponding ethynylaziridines in good to excellent yields. However, aziridination reaction of N-Boc amino alcohols (43, 44, 49, and 50: entries $1,2,5$,

Scheme 7 Reagents: i, NaH ; ii, $\mathrm{NaH}-\mathrm{MtsCl}$.

43, 44, 66, and 67: $\mathrm{R}^{1}=i-\mathrm{Pr}, \mathrm{R}^{2}=\mathrm{Boc}, \mathrm{R}^{3}=\mathrm{TMS}$
46, 48, 35, and 34: $R^{1}=i-\mathrm{Pr}, R^{2}=M t s, R^{3}=H$
49.50, 68, and 69: $\mathrm{R}^{1}=i-\mathrm{Pr}, \mathrm{R}^{2}=\mathrm{Boc}, \mathrm{R}^{3}=\mathrm{H}$

54, 57, 70, and 72: $R^{1}=\mathrm{TBDMSOCH}_{2}, \mathrm{R}^{2}=\mathrm{Mts}, \mathrm{R}^{3}=\mathrm{TMS}$
56. 59, 71, and 73: $\mathrm{R}^{1}=\mathrm{TBDMSOCH} \mathrm{H}_{2}, \mathrm{R}^{2}=\mathrm{Mts}, \mathrm{R}^{3}=\mathrm{H}$

Scheme 8

and 6 in Table 1) proceeded more slowly at $0{ }^{\circ} \mathrm{C}$ than that of the N-Mts derivatives $\left(\mathbf{4 6}, \mathbf{4 8}, \mathbf{5 4}, \mathbf{5 6}, 57\right.$, and $\mathbf{5 9} ; 0^{\circ} \mathrm{C}$; entries 3,4 , and $7-10$ in Table 1). Notably, the cyclization reaction of the anti-amino alcohols 44 and 50 required 2 h at $25^{\circ} \mathrm{C}$ to give the expected trans-aziridines $\mathbf{7 0}$ and $\mathbf{7 1}$ in rather low yields (73 and 64% respectively; entries 2 and 6).

Although the compounds $\mathbf{3 4}, \mathbf{3 5}, \mathbf{4 6}$, and $\mathbf{4 8}$ synthesized from (S)-valinol derivative 42 were essentially enantiomerically pure ($>98 \%$ ee), the compounds such as $\mathbf{5 6}, \mathbf{5 7}, \mathbf{5 9}, \mathbf{7 2}$, and $\mathbf{7 3}$ prepared from methyl (S)-serinate derivative 51 were not optically pure ($91-97 \%$ ee).

Table 2 lists spin-spin coupling constants for $J_{\text {Hab }}$ of the cisand trans-3-alkyl-2-ethynylaziridines. As can be seen from Table 2, the $c i s$-aziridines show $J_{\text {Hab }}$ values ($J=6.2-7.0 \mathrm{~Hz}$: entries $1-$ 10, Table 2) larger than the $J_{\text {Hab }}$ values ($J=3.2-4.3 \mathrm{~Hz}$: entries 11-18, Table 2) of the trans-isomers. The data for 2-ethynylaziridines are in good agreement with ${ }^{1} \mathrm{H}$ NMR data for 2-ethenylaziridines. ${ }^{12}$

5. Cross-coupling reaction at the terminal position of the ethynyl group of 2-ethynylaziridines with some electrophiles

Finally, substitution reaction of the ethynylaziridines 34 and 35

Table 1 Synthesis of 2-ethynylaziridines from amino alcohols under Mitsunobu conditions ${ }^{a}$

Entry	Substrate	R^{1}	R^{2}	R^{3}	$T /{ }^{\circ} \mathrm{C}$	t / h	Product	cis/trans	Yield ${ }^{\text {b }}$ (\%)
1	43	$i-\mathrm{Pr}$	Boc	TMS	25	0.5	66	cis	96
2	44	$i-\mathrm{Pr}$	Boc	TMS	25	2.0	67	trans	73
3	46	$i-\mathrm{Pr}$	Mts	H	0	0.5	35	cis	97
4	48	$i-\mathrm{Pr}$	Mts	H	0	0.5	34	trans	98
5	49	$i-\mathrm{Pr}$	Boc	H	25	0.5	68	cis	87
6	50	$i-\mathrm{Pr}$	Boc	H	25	2.0	69	trans	64
7	54	TBDMSOCH ${ }_{2}$	Mts	TMS	0	0.5	70	cis	94
8	56	$\mathrm{TBDMSOCH}_{2}$	Mts	H	0	0.5	71	cis	96
9	57	$\mathrm{TBDMSOCH}_{2}$	Mts	TMS	0	0.5	72	trans	99
10	59	TBDMSOCH2	Mts	H	0	0.5	73	trans	95

${ }^{a}$ All reactions were carried out in THF using diethyl azodicarboxylate (1.2-2.0 equiv.) and triphenylphosphine (1.2-2.0 equiv.). ${ }^{b}$ Isolated yields.

Table 2 Spin-spin coupling constants for $J_{\text {Hab }}$ of the cis- and trans-2-ethynylaziridines in $\mathrm{CDCl}_{3}{ }^{a}$

B (trans)

Entry	Compound	R^{1}	R^{2}	R^{3}	cis/trans	$J_{\text {Hab }}$
1	35	$i-\operatorname{Pr}$	Mts	H	cis	6.8
2	37	$i-\mathrm{Bu}$	Ts	H	cis	7.0
3	39	Bn	Mts	H	cis	6.8
4	41	Bn	Mtr	H	cis	6.8
5	66	$i-\mathrm{Pr}$	Boc	TMS	cis	6.2
6	68	$i-\mathrm{Pr}$	Boc	H	cis	6.5
7	70	TBDMSOCH ${ }_{2}$	Mts	TMS	cis	6.8
8	71	TBDMSOCH ${ }_{2}$	Mts	H	cis	7.0
9	76	$i-\mathrm{Pr}$	Mts	$\mathrm{CO}_{2} \mathrm{Me}$	cis	7.0
10	77	$i-\mathrm{Pr}$	Mts	TMS	cis	6.8
11	34	$i-\mathrm{Pr}$	Mts	H	trans	4.2
12	36	$i-\mathrm{Bu}$	Ts	H	trans	3.8
13	38	Bn	Mts	H	trans	3.8
14	40	Bn	Mtr	H	trans	4.1
15	67	$i-\mathrm{Pr}$	Boc	TMS	trans	3.2
16	69	$i-\mathrm{Pr}$	Boc	H	trans	3.2
17	72	$\mathrm{TBDMSOCH}_{2}$	Mts	TMS	trans	4.3
18	73	TBDMSOCH2	Mts	H	trans	4.3
19	74	$i-\mathrm{Pr}$	Mts	$\mathrm{CO}_{2} \mathrm{Me}$	trans	${ }^{\text {b }}$
20	75	$i-\mathrm{Pr}$	Mts	TMS	trans	b

${ }^{a}$ All ${ }^{1} \mathrm{H}$ NMR spectra were recorded in CDCl_{3} at 300 K . For designations of Ha and Hb , see structures A and $\mathrm{B} .{ }^{b} J$ values were unreadable because of an overlap of the two signals, Ha and Hb .

Scheme 9
at the acetylene terminus was briefly investigated (Scheme 9). Treatment of 34 with LDA at $-78^{\circ} \mathrm{C}$ for 1 h followed by addition of methyl chloroformate or chlorotrimethylsilane gave $\mathbf{7 4}$
or 75 in good yields. Similarly, cis-2-ethynylaziridine 35 was converted into the terminally-substituted ethynylaziridines 76 and 77. From the above experimentation, it is apparent that lithium aziridinylacetylides are stable at $-78^{\circ} \mathrm{C}$ for at least a short period of time and they are reactive to undergo nucleophilic attack to methyl chloroformate or chlorotrimethylsilane at $-78{ }^{\circ} \mathrm{C}$.

In summary, we have developed two procedures for the preparation of cis- and trans-2-ethynylaziridines from natural α-amino acids. Exposure of brominated allylic mesylates to NaH in DMSO gives trans-2-(1-bromovinyl)aziridines stereoselectively in good yield, which could be easily transformed into separable mixtures of cis- and trans-2-ethynylaziridines ($>98 \%$ ee) by treatment with t-BuOK in THF. Alternatively, cyclization of amino alcohols bearing an ethynyl group under Mitsunobu conditions also gives 2-ethynylaziridines efficiently ($91-98 \%$ ee). The synthesized compounds could serve as useful synthetic intermediates to chiral allenes and acetylenes bearing an amino group, and we are now undertaking synthetic studies involving this class of compounds.

Experimental

General methods

The instrumentation has been described previously. ${ }^{16}$ All reactions were carried out under a positive pressure of argon. All glassware and syringes were dried in an electric oven at $100^{\circ} \mathrm{C}$ prior to use. All melting points are uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra were recorded using a JEOL EX-270 (270 MHz) or Bruker AC-300 (300 MHz) spectrometer in CDCl_{3}. Chemical shifts are reported in parts per million downfield from internal $\mathrm{Me}_{4} \mathrm{Si} . J$ Values are given in Hz . For flash chromatography, silica gel 60 H (silica gel for thin-layer chromatography, Merck) or silica gel 60 (finer than 230 mesh, Merck) was employed. For the determination of optical purity, Chiralcel OD and OJ (DAICEL, $4.6 \times 260 \mathrm{~mm}$) was used. For reversed-phase HPLC, μ-Bondasphere-C-18 ($3.9 \times 150 \mathrm{~mm}$, Waters) was employed ($28^{\circ} \mathrm{C}$).

General procedure for the preparation of $E I Z$ pairs of methyl 4-amino-2-bromo-2-enoates (8 and 9), (13 and 14), and (19, and 20) from amino alcohols (7, 12, and 18). Methyl (4S,2Z)-2-bromo-5-methyl-4-[N-(2,4,6-trimethylphenylsulfonyl)amino]hex-2-enoate 8 and its $(4 S, 2 E)$ isomer 9

To a stirred solution of oxalyl chloride ($2.6 \mathrm{~cm}^{3}, 27.2 \mathrm{mmol}$) in a mixed solvent of $\mathrm{CHCl}_{3}\left(25 \mathrm{~cm}^{3}\right)$ and n-hexane ($20 \mathrm{~cm}^{3}$) at $-78^{\circ} \mathrm{C}$ under argon was added dropwise a solution of DMSO ($10.6 \mathrm{~cm}^{3}, 150 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}\left(15 \mathrm{~cm}^{3}\right)$. After 30 min , a solution of the alcohol $7(8.56 \mathrm{~g}, 30 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}\left(15 \mathrm{~cm}^{3}\right)$ was added to the above reagent at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 1 h . Diisopropylethylamine ($36.6 \mathrm{~cm}^{3}, 210 \mathrm{mmol}$) was added to the above solution at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 30 min with warming to $0^{\circ} \mathrm{C}$. Saturated aqueous citric acid $\left(40 \mathrm{~cm}^{3}\right)$ was added to the mixture and the whole was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed successively with water, $5 \% \mathrm{NaHCO}_{3}$, and water, and dried over MgSO_{4}. Usual workup gave a crude aldehyde, which was dissolved in CHCl_{3} $\left(40 \mathrm{~cm}^{3}\right)$. Bromo ylide $\left[\mathrm{Ph}_{3} \mathrm{P}=\mathrm{C}(\mathrm{Br}) \mathrm{CO}_{2} \mathrm{Me} ; 12.4 \mathrm{~g}, 30 \mathrm{mmol}\right]$ was added to the above solution at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 15 h at this temperature. Concentration under reduced pressure gave an oily residue, which was flash chromatographed over silica gel. Elution with n-hexane-EtOAc (4:1) gave $9(1.59 \mathrm{~g}, 12.7 \%)$ and further elution yielded $\mathbf{8}(9.3 \mathrm{~g}, 74 \%$ yield). Compound 8: 98% ee (S) by HPLC [Daicel Chiralcel OD, n-hexane: propan-2-ol $=95: 5\left(0.5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\right),(R)$-isomer 28.9 min , (S)-isomer 36.7 min]; colourless crystals, $\mathrm{mp} 112{ }^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$) (Found: C, 48.8; H, 5.8; N, 3.4. $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{BrNO}_{4} \mathrm{~S}$ requires C, 48.8; $\mathrm{H}, 5.8 ; \mathrm{N}, 3.35 \%$); $[a]_{\mathrm{D}}^{20}+20.9$ (c 1.15 in CHCl_{3}); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.91(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CMe}), 0.95(3 \mathrm{H}, \mathrm{d}$, J 7.0, CMe), 1.84-1.97 (1 H, m, 5-H), 2.27 (3 H, s, CMe), 2.63 $(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 3.75(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.02(1 \mathrm{H}, \mathrm{ddd}, J 9.2,8.6$ and $5.9,4-\mathrm{H}), 4.81(1 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{NH}), 6.83(1 \mathrm{H}, \mathrm{d}, J 9.2,3-\mathrm{H})$, 6.91 ($2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}$). Compound 9: 98% ee (S) by HPLC [Daicel Chiralcel OD, n-hexane:propan-2-ol $=97: 3\left(0.5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\right)$, (R)-isomer $39.4 \mathrm{~min},(S)$-isomer 41.8 min$]$; colourless crystals, $\mathrm{mp} 135^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$) (Found: C, $48.75 ; \mathrm{H}, 5.75$; N, 3.4. $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{BrNO}_{4} \mathrm{~S}$ requires C, $48.8 ; \mathrm{H}, 5.8 ; \mathrm{N}, 3.35 \%$); $[a]_{\mathrm{D}}^{20}-60.1$ (c 1.53 in CHCl_{3}); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.90(3 \mathrm{H}, \mathrm{d}, J 7.0$, CMe), 0.94 ($3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CMe}$), 1.75-1.88 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), 2.30 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), 2.59 ($6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}$), 3.74 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.50 $(1 \mathrm{H}$, ddd, $J 10.0,8.9$ and $5.9,4-\mathrm{H}), 4.73(1 \mathrm{H}, \mathrm{d}, J 8.9, \mathrm{NH})$, $6.22(1 \mathrm{H}, \mathrm{d}, J 10.0,3-\mathrm{H}), 6.93(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph})$.

General procedure for the preparation of allylic alcohols (10,16 , 23, and 24). (4S,2Z)-2-Bromo-5-methyl-4-[N-(2,4,6-trimethyl-phenylsulfonyl)amino]hex-2-en-1-ol 10
DIBAL-H (1.0 M solution in toluene; $209 \mathrm{~cm}^{3}, 209 \mathrm{mmol}$) was added dropwise to a stirred solution of the enoate $\mathbf{8}(25 \mathrm{~g}, 59.8$ mmol) in a mixed solvent of toluene ($150 \mathrm{~cm}^{3}$) and $\mathrm{CHCl}_{3}(60$
cm^{3}) at $-78^{\circ} \mathrm{C}$ under argon. After stirring for 3 h with warming to $-20^{\circ} \mathrm{C}$, a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution ($30 \mathrm{~cm}^{3}$) was added with vigorous stirring. The mixture was made acidic with saturated citric acid and extracted with EtOAc. The extract was washed successively with water and NaHCO_{3}, and dried over MgSO_{4}. The usual workup followed by recrystallization from n-hexaneEtOAc (1:1) gave the title compound $\mathbf{1 0}$ ($21.9 \mathrm{~g}, 94 \%$ yield) as colourless crystals, mp $104{ }^{\circ} \mathrm{C}$ (Found: C, 49.1; H, 6.3; N, 3.5. $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{BrNO}_{3} \mathrm{~S}$ requires C, 49.2; H, 6.2; N, 3.6\%); $[\alpha]_{\mathrm{D}}^{19}+44.6$ (c 0.866 in $\left.\mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3} ; 258 \mathrm{~K}\right) 0.76(3 \mathrm{H}, \mathrm{d}$, $J 6.8, \mathrm{CMe}), 0.81(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CMe}), 1.65-1.76(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$, $2.33(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe})$, $2.68(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 3.31-3.38(1 \mathrm{H}, \mathrm{m}$, $\mathrm{OH}), 3.95(1 \mathrm{H}$, ddd, $J 9.0,8.3$ and $5.8,4-\mathrm{H}), 4.08(1 \mathrm{H}, \mathrm{dd}$, $J 14.4$ and $6.9,1-\mathrm{CHH}), 4.21(1 \mathrm{H}, \mathrm{dd}, J 14.4$ and $6.5,1-\mathrm{CHH})$, 5.78 ($1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{NH})$, 5.91 ($1 \mathrm{H}, J 9.0,3-\mathrm{H}), 6.99(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph})$.

General procedure for the preparation of allylic methanesulfonates (11, 17, 25, and 26). (4S,2Z)-2-Bromo-O-methylsulfonyl-5-methyl-4-[N-(2,4,6-trimethylphenylsulfonyl)amino]hex-2-en-1-ol 11

To a stirred mixture of the alcohol $\mathbf{1 0}(3.12 \mathrm{~g}, 8 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}\left(5.53 \mathrm{~cm}^{3}, 40 \mathrm{mmol}\right)$ in THF $\left(15 \mathrm{~cm}^{3}\right)$ was added dropwise methanesulfonyl chloride ($2.17 \mathrm{~cm}^{3}, 28 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 1 h with warming to $0^{\circ} \mathrm{C}$. Saturated aqueous $\mathrm{NaHCO}_{3}\left(5 \mathrm{~cm}^{3}\right)$ was added with vigorous stirring. The whole was extracted with EtOAc and the extract was washed successively with 5% citric acid, water, $5 \% \mathrm{NaHCO}_{3}$, and water, and dried over MgSO_{4}. Usual workup followed by flash chromatography over silica gel with n-hexane-EtOAc (1:1) gave the title compound $\mathbf{1 1}(3.71 \mathrm{~g}, 99 \%$ yield) as colourless crystals, $\mathrm{mp} 86^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$) (Found: C, 43.4; H, 5.5; N, 3.0. $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{BrNO}_{5} \mathrm{~S}_{2}$ requires $\mathrm{C}, 43.6 ; \mathrm{H}, 5.6 ; \mathrm{N}, 3.0 \%$); $[a]_{\mathrm{D}}^{18}$ $+30.2\left(c 1.32\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.88(3 \mathrm{H}, \mathrm{d}$, $J 6.8$, CMe), $0.92(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CMe}), 1.78-1.90(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$, $2.31(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.64(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 3.04(3 \mathrm{H}, \mathrm{s}$, $\mathrm{SO}_{2} \mathrm{Me}$), $3.94(1 \mathrm{H}$, ddd, $J 8.9,8.6$ and $6.2,4-\mathrm{H}$), 4.52-4.62 $\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{CH}_{2}\right), 4.76(1 \mathrm{H}, \mathrm{d}, J 6.2, \mathrm{NH}), 5.86(1 \mathrm{H}, \mathrm{d}, J 8.9$, $3-\mathrm{H}), 6.95$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}$).

Methyl (4S,2Z)-2-bromo-4-[N-(tert-butoxycarbonyl)amino]-6-methylhept-2-enoate 13 and its $(4 S, 2 E)$ isomer 14

By a procedure identical with that described for the preparation of the enoates $\mathbf{8}$ and $\mathbf{9}$ from 7, the alcohol $12(13.7 \mathrm{~g}, 63 \mathrm{mmol})$ was converted into the title compound 13 ($12.2 \mathrm{~g}, 55 \%$ yield) and $\mathbf{1 4}(8.49 \mathrm{~g}, 39 \%$ yield). Compound 13: colourless crystals, $\mathrm{mp} 71{ }^{\circ} \mathrm{C}$ (from n-hexane) (Found: C, 47.9 ; H, 7.1; N, 3.9. $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{BrNO}_{4}$ requires C, $48.0 ; \mathrm{H}, 6.9 ; \mathrm{N}, 4.0 \%$); $[a]_{\mathrm{D}}^{28}+43.3$ (c 1.08 in CHCl_{3}); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.96(3 \mathrm{H}, \mathrm{d}, J 6.8$, $\mathrm{CMe}), 0.98(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CMe}), 1.30-1.45\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{CH}_{2}\right)$, $1.44\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right), 1.61-1.74(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.83(3 \mathrm{H}$, s , OMe), 4.50-4.65 ($2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and NH), $7.13(1 \mathrm{H}, \mathrm{d}$, $J 6.6,3-\mathrm{H}$). Compound 14: colourless crystals, $\mathrm{mp} 91^{\circ} \mathrm{C}$ (from n-hexane) (Found: C, 47.9; H, 6.7; N, 3.9. $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{BrNO}_{4}$ requires $\mathrm{C}, 48.0 ; \mathrm{H}, 6.9 ; \mathrm{N}, 4.0 \%) ;[a]_{\mathrm{D}}^{28}-3.0\left(c 1.37 \mathrm{in} \mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.93(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CMe}), 0.97(3 \mathrm{H}, \mathrm{d}$, $J 6.8, \mathrm{CMe}), 1.35-1.50\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{CH}_{2}\right), 1.43\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right)$, 1.60-1.75 ($1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$), $3.84(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.56(1 \mathrm{H}, \mathrm{br}$ s, NH), 4.88-5.02 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 6.50(1 \mathrm{H}, \mathrm{d}, J 8.9,3-\mathrm{H})$.

General procedure for the preparation of N -arenesulfonamide (15, 21, 22, 45, 47, 54, 57) from the corresponding N-Boc derivatives. Methyl (4S,2Z)-2-bromo-6-methyl-4-[N-(4-methylphenylsulfonyl)amino]hept-2-enoate 15
Trifluoroacetic acid $\left(20 \mathrm{~cm}^{3}\right)$ was added to a stirred solution of the enoate $\mathbf{1 3}(6.75 \mathrm{~g}, 19 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}\left(20 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 1 h at this temperature. The mixture was concentrated to an oil under reduced pressure, which was made alkaline with $28 \% \mathrm{NH}_{4} \mathrm{OH}$ at $0^{\circ} \mathrm{C}$ and extracted with
CHCl_{3}. The extract was washed with water, and dried over MgSO_{4}. Usual workup gave an oily residue. To a stirred mixture of the oil and $\mathrm{Et}_{3} \mathrm{~N}\left(5 \mathrm{~cm}^{3}, 36 \mathrm{mmol}\right)$ in $\mathrm{CHCl}_{3}\left(100 \mathrm{~cm}^{3}\right)$ was added toluene-p-sulfonyl chloride ($4.3 \mathrm{~g}, 24.7 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 1 h at this temperature, followed by quenching with aqueous $5 \% \mathrm{NaHCO}_{3}\left(20 \mathrm{~cm}^{3}\right)$. The mixture was made acidic with saturated aqueous citric acid, and the whole was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed successively with water, aqueous $5 \% \mathrm{NaHCO}_{3}$, and water, and dried over MgSO_{4}. Usual workup followed by recrystallization from n-hexane- $\mathrm{Et}_{2} \mathrm{O}(4: 1)$ gave the title compound $15(6.49 \mathrm{~g}$, 83% yield). 98% ee (S) by HPLC [Daicel Chiralcel OD, n-hexane: propan-2-ol $=95: 5\left(0.5 \mathrm{~cm}^{3} \min ^{-1}\right),(S)$-isomer 37.9 min]; colourless needles, $\mathrm{mp} 115^{\circ} \mathrm{C}$ [from n-hexane- $\mathrm{Et}_{2} \mathrm{O}(4: 1)$] (Found: C, $47.6 ; \mathrm{H}, 5.5 ; \mathrm{N}, 3.4 . \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{BrNO}_{4} \mathrm{~S}$ requires C, 47.5; $\mathrm{H}, 5.5 ; \mathrm{N}, 3.5 \%) ;[a]_{\mathrm{D}}^{30}-42.7$ (c 1.19 in CHCl_{3}); $\delta_{\mathrm{H}}(270 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.80(3 \mathrm{H}, \mathrm{d}, J 6.2, \mathrm{CMe}), 0.89(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CMe})$, $1.27(1 \mathrm{H}$, ddd, $J 13.8,8.6$ and $5.1,5-\mathrm{CHH}), 1.45(1 \mathrm{H}$, ddd, $J 13.8,9.5$ and $5.4,5-\mathrm{CH} H), 1.55-1.72(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.41(3 \mathrm{H}$, s , CMe), 3.75 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.19-4.31 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), 4.91 (1 H , d, $J 7.6, \mathrm{NH}), 6.86(1 \mathrm{H}, \mathrm{d}, J 8.6,3-\mathrm{H}), 7.26-7.29(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, 7.74-7.77 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$).

(4S,2Z)-2-Bromo-6-methyl-4-[N-(4-methylphenylsulfony)-amino]hept-2-en-1-ol 16

By a procedure identical with that described for the preparation of the alcohol $\mathbf{1 0}$ from $\mathbf{8}$, the enoate $15(6.48 \mathrm{~g}, 16 \mathrm{mmol})$ was converted into the title compound $16(5.67 \mathrm{~g}, 94 \%$ yield $)$ as colourless crystals, $\mathrm{mp} 119^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$) (Found: C, 48.2; $\mathrm{H}, 5.8 ; \mathrm{N}, 3.6 . \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{BrNO}_{3} \mathrm{~S}$ requires C, 47.9; H, 5.9; N, 3.7\%); $[a]_{\mathrm{D}}^{30}+11.6\left(c 1.46\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.78(3 \mathrm{H}, \mathrm{d}$, $J 6.5, \mathrm{CMe}), 0.86(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CMe}), 1.26(1 \mathrm{H}, \mathrm{ddd}, J 13.9$, 8.0 and $6.2,5-\mathrm{C} H \mathrm{H}), 1.41(1 \mathrm{H}$, ddd, $J 13.9,8.5$ and 6.0 , $5-\mathrm{CH} H), 1.52-1.65(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.08(1 \mathrm{H}, \mathrm{br}$ s, OH), 2.43 $(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 3.99(1 \mathrm{H}, \mathrm{dd}, J 14.4$ and 1.1, 1-CHH), $4.03(1 \mathrm{H}$, dd, $J 14.4$ and $1.1,1-\mathrm{CH} H), 4.13-4.24(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.89(1 \mathrm{H}$, d, $J 7.4, \mathrm{NH}$), 5.74 (1 H , ddd, $J 8.6,1.1$ and $1.1,3-\mathrm{H}$), $7.28-7.32$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.75-7.80(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.

(4S,2Z)-2-Bromo- O-methylsulfonyl-6-methyl-4-[N-(4-methyl-phenylsulfonyl)amino]hept-2-en-1-ol 17

By a procedure identical with that described for the preparation of the mesylate $\mathbf{1 1}$ from $\mathbf{1 0}$, the alcohol $\mathbf{1 6}(5.67 \mathrm{~g}, 15.1 \mathrm{mmol})$ was converted into the title compound 17 ($6.37 \mathrm{~g}, 93 \%$ yield) as colourless needles, $\mathrm{mp} 139^{\circ} \mathrm{C}$ [from $\mathrm{CHCl}_{3}-\mathrm{Et}_{2} \mathrm{O}$ (1:9)] (Found: C, 42.3; H, 5.3; N, 3.0. $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{BrNO}_{5} \mathrm{~S}_{2}$ requires C, 42.3; H, 5.3; N, 3.1\%); [a $]_{\mathrm{D}}^{30}+13.4\left(c 0.984\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.76(3 \mathrm{H}, \mathrm{d}, J 6.2, \mathrm{CMe}), 0.86(3 \mathrm{H}, \mathrm{d}, J 6.5$, CMe), 1.24 (1 H , ddd, $J 14.0,8.4$ and $5.7,5-\mathrm{CHH}$), $1.41(1 \mathrm{H}$, ddd, $J 14.0,8.9$ and $5.4,5-\mathrm{CH} H), 1.51-1.66(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.44$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), $3.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SO}_{2} \mathrm{Me}\right), 4.10-4.22(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$, $4.610(1 \mathrm{H}, \mathrm{d}, J 13.2,1-\mathrm{C} H \mathrm{H}), 4.614(1 \mathrm{H}, \mathrm{d}, J 13.2,1-\mathrm{CH} H)$, $4.97(1 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{NH}), 5.92(1 \mathrm{H}, \mathrm{d}, J 8.6,3-\mathrm{H}), 7.29-7.33$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.74-7.78(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.

2-[\mathbf{N}-(tert-Butoxycarbonyl)amino]-3-phenylpropan-1-ol 18

To a stirred solution of (S)-phenylalaninol ${ }^{17}(14 \mathrm{~g}, 92.6 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}\left(25.6 \mathrm{~cm}^{3}, 185 \mathrm{mmol}\right)$ in DMF ($60 \mathrm{~cm}^{3}$) was added $\mathrm{Boc}_{2} \mathrm{O}(20.2 \mathrm{~g}, 92.6 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 1 h at this temperature. Water $\left(40 \mathrm{~cm}^{3}\right)$ was added to the mixture and the whole was extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the extract was washed successively with 5% citric acid, water, 5% NaHCO_{3}, and water, and dried over MgSO_{4}. Usual workup followed by recrystallization from n-hexane-EtOAc (4:1) gave the title compound 18 ($20.2 \mathrm{~g}, 87 \%$ yield) as colourless needles, $\mathrm{mp} 92{ }^{\circ} \mathrm{C}$ [from n-hexane-EtOAc (4:1)] (Found: C, 66.95 ; H, $8.65 ; \mathrm{N}, 5.9 . \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{3}$ requires C, 66.9; H, 8.4; N, 5.6\%); [a $]_{\mathrm{D}}^{31}$ $-24.2\left(c 0.756\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.41(9 \mathrm{H}, \mathrm{s}$,
CMe_{3}), $2.65(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.82-2.85\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{CH}_{2}\right), 3.54$ $(1 \mathrm{H}, \mathrm{dd}, J 10.8$ and $5.4,1-\mathrm{CHH}), 3.65(1 \mathrm{H}, \mathrm{dd}, J 10.8$ and 3.8 , 1-CHH), 3.80-3.93 ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$), 4.82 ($1 \mathrm{H}, \mathrm{br}$ s, NH), $7.19-$ $7.33(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.

Methyl (4S,2Z)-2-bromo-4-[N -(tert-butoxycarbonyl)amino]-5-phenylpent-2-enoate 19 and its ($4 S, 2 E$) isomer 20

By a procedure identical with that described for the preparation of the enoates $\mathbf{8}$ and $\mathbf{9}$ from 7, the alcohol $18(28.4 \mathrm{~g}, 113 \mathrm{mmol})$ was converted into the title compound 19 ($23.6 \mathrm{~g}, 54 \%$ yield) and 20 ($14.2 \mathrm{~g}, 33 \%$ yield). Compound 19: colourless needles, $\mathrm{mp} 133-135^{\circ} \mathrm{C}$ [from n-hexane-EtOAc (5:1)] (Found: C, 53.0; $\mathrm{H}, 5.7 ; \mathrm{N}, 3.6 . \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{BrNO}_{4}$ requires C, 53.1; $\mathrm{H}, 5.8 ; \mathrm{N}, 3.6 \%$); $[a]_{\mathrm{D}}^{28}+56.3\left(c 0.742\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.39(9 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CMe}_{3}\right), 2.80-2.95(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{CHH}), 2.96(1 \mathrm{H}, \mathrm{dd}, J 13.8$ and 4.9, 5-CHH), 3.83 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.60-4.79 ($2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and NH), 7.18-7.36 (6 H, m, Ph and 3-H). Compound 20: colourless needles, $\mathrm{mp} 124^{\circ} \mathrm{C}$ [from n-hexane-EtOAc (5:1)] (Found: C, $53.0 ; \mathrm{H}, 5.6 ; \mathrm{N}, 3.65 . \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{BrNO}_{4}$ requires C, $53.1 ; \mathrm{H}, 5.8$; $\mathrm{N}, 3.6) ;[a]_{\mathrm{D}}^{28}+34.2\left(c 1.30\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.38$ $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right), 2.81-2.96(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{C} H \mathrm{H}), 2.97(1 \mathrm{H}, \mathrm{dd}$, $J 13.2$ and $5.1,5-\mathrm{CH} H), 3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.62(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, NH), $5.07-5.18$ ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), 6.62 ($1 \mathrm{H}, \mathrm{d}, J 8.9,3-\mathrm{H}$), $7.20-$ $7.36(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.

Methyl (4S,2Z)-2-bromo-5-phenyl-4-[N-(2,4,6-trimethyl-phenylsulfonyl)amino]pent-2-enoate 21

By a procedure similar to that described for the preparation of 15 from 13, the enoate $19(10.0 \mathrm{~g}, 26 \mathrm{mmol})$ was converted into the title compound 21 ($10.0 \mathrm{~g}, 82 \%$ yield). 98% ee (S) by HPLC [Daicel Chiralcel OD, n-hexane: propan-2-ol $=95: 5\left(0.5 \mathrm{~cm}^{3}\right.$ $\min ^{-1}$), (S)-isomer 59.4 min]; colourless needles, $\mathrm{mp} 109^{\circ} \mathrm{C}$ [from n-hexane- $\mathrm{Et}_{2} \mathrm{O}-\mathrm{CHCl}_{3}(3: 1: 1)$] (Found: C, $53.95 ; \mathrm{H}, 5.3$; $\mathrm{N}, 2.9 . \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{BrNO}_{4} \mathrm{~S}$ requires C, 54.1; H, 5.2; N, 3.0\%); [a] ${ }_{\mathrm{D}}^{28}$ $-2.13\left(c 0.937\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.28(3 \mathrm{H}, \mathrm{s}$, CMe), $2.34(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 2.68(1 \mathrm{H}, \mathrm{dd}, J 13.8$ and 9.2 , $5-\mathrm{CHH}), 2.96(1 \mathrm{H}, \mathrm{dd}, J 13.8$ and $4.6,5-\mathrm{CH} H), 3.80(3 \mathrm{H}, \mathrm{s}$, OMe), 4.17-4.27 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$, 4.68-4.74 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NH}$), 6.84 $(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 7.02-7.06(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.17(1 \mathrm{H}, \mathrm{d}, J 7.8,3-\mathrm{H})$, 7.20-7.29 ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$).

Methyl (4S,2Z)-2-bromo-4-[N-(4-methoxy-2,3,6-trimethyl-

 phenylsulfonyl)amino]-5-phenylpent-2-enoate 22By a procedure similar to that described for the preparation of 15 from 13, the enoate $19(14 \mathrm{~g}, 36.4 \mathrm{mmol})$ was converted into the title compound 22 ($17.5 \mathrm{~g}, 97 \%$ yield) as colourless crystals, $\mathrm{mp} 142{ }^{\circ} \mathrm{C}$ [from n-hexane-EtOAc (5:2)] (Found: C, $53.05 ; \mathrm{H}$, 5.2; $\mathrm{N}, 2.5 . \mathrm{C}_{22} \mathrm{H}_{26} \mathrm{BrNO}_{5} \mathrm{~S}$ requires $\mathrm{C}, 53.2 ; \mathrm{H}, 5.3 ; \mathrm{N}, 2.8 \%$); $[a]_{\mathrm{D}}^{28}+4.43\left(c 1.31\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.02(3 \mathrm{H}, \mathrm{s}$, CMe), 2.09 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), $2.53(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe})$, $2.67(1 \mathrm{H}, \mathrm{dd}$, $J 13.8$ and $9.2,5-\mathrm{CHH}), 2.95(1 \mathrm{H}$, dd, $J 13.8$ and $4.3,5-\mathrm{CH} H)$, $3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.85(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.19$ (1 H , dddd, $J 9.2$, 8.4, 4.9 and $4.3,4-\mathrm{H}), 4.67(1 \mathrm{H}, \mathrm{d}, J 4.9, \mathrm{NH}), 6.52(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph})$, 7.03-7.08 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.11 ($1 \mathrm{H}, \mathrm{d}, J$ 8.4, 3-H), 7.20-7.27 (3 H , m, Ph).

(4S,2Z)-2-Bromo-5-phenyl-4-[N-(2,4,6-trimethylphenyl-sulfonyl)amino]pent-2-en-1-ol 23

By a procedure identical with that described for the preparation of the alcohol $\mathbf{1 0}$ from $\mathbf{8}$, the enoate $\mathbf{2 1}(9.95 \mathrm{~g}, 21.3 \mathrm{mmol})$ was converted into the title compound $23(8.85 \mathrm{~g}, 95 \%$ yield) as colourless crystals, $\mathrm{mp} 142^{\circ} \mathrm{C}$ [from $\mathrm{CHCl}_{3}-\mathrm{Et}_{2} \mathrm{O}$ (1:2)] (Found: C, 54.8; H, 5.6; N, 3.1. $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{BrNO}_{3} \mathrm{~S}$ requires C, 54.8; $\mathrm{H}, 5.5 ; \mathrm{N}, 3.2 \%)$; $[a]_{\mathrm{D}}^{28}+24.6\left(c 0.926\right.$ in CHCl_{3}); $\delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 2.04(1 \mathrm{H}, \mathrm{dd}, J 7.0$ and $6.9, \mathrm{OH}), 2.29(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe})$, $2.39(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 2.67(1 \mathrm{H}, \mathrm{dd}, J 13.9$ and $8.8,5-\mathrm{CHH})$, $2.92(1 \mathrm{H}$, dd, $J 13.9$ and $5.0,5-\mathrm{CH} H), 4.03-4.16(2 \mathrm{H}, \mathrm{m}$, $\left.1-\mathrm{CH}_{2}\right), 4.24(1 \mathrm{H}$, dddd, $J 8.8,8.1,5.3$ and $5.0,4-\mathrm{H}), 4.69(1 \mathrm{H}$,
d, $J 5.3, \mathrm{NH}$), $5.91(1 \mathrm{H}$, ddd, $J 8.1,1.3$ and $1.3,3-\mathrm{H}), 6.85-6.87$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.04-7.07 (2 H, m, Ph), 7.21-7.25 (3 H, m, Ph).

(4S,2Z)-2-Bromo-4-[N-(4-methoxy-2,3,6-trimethylphenyl-sulfonyl)amino]-5-phenylpent-2-en-1-ol 24

By a procedure identical with that described for the preparation of the alcohol $\mathbf{1 0}$ from $\mathbf{8}$, the enoate $22(17.4 \mathrm{~g}, 35 \mathrm{mmol})$ was converted into the title compound 24 ($15.5 \mathrm{~g}, 95 \%$ yield) as colourless crystals, $\mathrm{mp} 126^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$) (Found: C, 53.8; H 5.6; $\mathrm{N}, 2.7 . \mathrm{C}_{21} \mathrm{H}_{26} \mathrm{BrNO}_{4} \mathrm{~S}$ requires C, 53.85; H, 5.6; $\mathrm{N}, 3.0 \%$); $[a]_{\mathrm{D}}^{29}+31.5\left(c 1.06\right.$ in $\left.\mathrm{CHCl}_{3}\right)$) $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.04(3 \mathrm{H}, \mathrm{s}$, CMe), $2.09(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.31-2.42(1 \mathrm{H}, \mathrm{m}, \mathrm{OH}), 2.55(3 \mathrm{H}, \mathrm{s}$, CMe), $2.64(1 \mathrm{H}, \mathrm{dd}, J 13.8$ and $9.2,5-\mathrm{CHH}), 2.90(1 \mathrm{H}$, dd, $J 13.8$ and $4.6,5-\mathrm{CH} H), 3.86(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.05-4.20(3 \mathrm{H}, \mathrm{m}$, $1-\mathrm{CH}_{2}$ and $\left.4-\mathrm{H}\right), 4.71(1 \mathrm{H}, \mathrm{d}, J 4.9, \mathrm{NH}), 6.01(1 \mathrm{H}, \mathrm{d}, J 8.4$, $3-\mathrm{H}), 6.53(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 7.01-7.06(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.17-7.25(3 \mathrm{H}$, m, Ph).

(4S,2Z)-2-Bromo-O-methylsulfonyl-5-phenyl-4-[N-(2,4,6-trimethylphenylsulfonyl)amino]pent-2-en-1-ol 25

By a procedure identical with that described for the preparation of the mesylate $\mathbf{1 1}$ from 10, the alcohol $23(701 \mathrm{mg}, 1.6 \mathrm{mmol})$ was converted into the title compound 25 ($776 \mathrm{mg}, 94 \%$ yield) as colourless crystals, $\mathrm{mp} 106^{\circ} \mathrm{C}$ [from $\mathrm{CHCl}_{3}-\mathrm{Et}_{2} \mathrm{O}$ (1:2)] (Found: C, 48.8; H, 5.05; N, 2.7. $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{BrNO}_{5} \mathrm{~S}_{2}$ requires C, 48.8; H, 5.1; N, 2.7\%); [a] $]_{\mathrm{D}}^{30}+8.26$ (c 1.03 in CHCl_{3}); $\delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.35(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 2.68$ $(1 \mathrm{H}, \mathrm{dd}, J 13.8$ and $8.9,5-\mathrm{CHH}), 2.92(1 \mathrm{H}, \mathrm{dd}, J 13.8$ and 4.9 , 5-CHH), 3.04 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SO}_{2} \mathrm{Me}$), 4.17 (1 H , dddd, J $8.9,7.8,5.1$ and 4.9, 4-H), $4.64(1 \mathrm{H}, \mathrm{d}, J 5.1, \mathrm{NH})$, $4.68-4.76(2 \mathrm{H}, \mathrm{m}$, $\left.1-\mathrm{CH}_{2}\right), 6.14(1 \mathrm{H}, \mathrm{d}, J 7.8,3-\mathrm{H}), 6.86(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 7.02-7.06$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.20-7.28(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.
(4S,2Z)-2-Bromo- O-methylsulfonyl-4-[N-(4-methoxy-2,3,6-trimethylphenylsulfonyl)amino]-5-phenylpent-2-en-1-ol 26
By a procedure identical with that described for the preparation of the mesylate $\mathbf{1 1}$ from $\mathbf{1 0}$, the alcohol $24(15.4 \mathrm{~g}, 32.9 \mathrm{mmol})$ was converted into the title compound $26(17.0 \mathrm{~g}, 95 \%$ yield $)$ as colourless crystals, $\mathrm{mp} 101-103^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$) (Found: C, 48.05; H, 5.2; N, 2.4. $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{BrNO}_{6} \mathrm{~S}_{2}$ requires C, 48.35; H, 5.2; $\mathrm{N}, 2.6 \%) ;[a]_{\mathrm{D}}^{28}+13.2\left(c 1.59\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $2.03(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.07(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.53(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.66$ $(1 \mathrm{H}, \mathrm{dd}, J 13.8$ and $9.2,5-\mathrm{C} H \mathrm{H}), 2.91(1 \mathrm{H}, \mathrm{dd}, J 13.8$ and 4.9 , 5-CHH), 3.05 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SO}_{2} \mathrm{Me}$), 3.86 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $4.12(1 \mathrm{H}$, dddd, J 9.2, 8.1, 4.9 and $4.6,4-\mathrm{H}), 4.64$ ($1 \mathrm{H}, \mathrm{d}, J 4.6$, NH), 4.72-4.75 ($\left.2 \mathrm{H}, \mathrm{m}, 1-\mathrm{CH}_{2}\right), 6.18(1 \mathrm{H}, \mathrm{d}, J 8.1,3-\mathrm{H}), 6.54(1 \mathrm{H}, \mathrm{s}$, Ph), 7.01-7.06 (2 H, m, Ph), 7.19-7.29 (3 H, m, Ph).

General procedure for aziridination of allylic mesylates (11, 17, 25 and 26) by exposure to sodium hydride in DMSO. ($2 S, 3 S$)-2-(1-Bromovinyl)-3-isopropyl- N-(2,4,6-trimethylphenylsulfonyl)aziridine $\mathbf{2 7}$ from the mesylate 11

To a stirred suspension of $\mathrm{NaH}(328 \mathrm{mg}, 8.2 \mathrm{mmol})$ in DMSO $\left(14 \mathrm{~cm}^{3}\right)$ under argon was added a solution of the allylic mesylate $11(3.2 \mathrm{~g}, 6.83 \mathrm{mmol})$ in $\operatorname{DMSO}\left(6 \mathrm{~cm}^{3}\right)$ at room temperature. After 1 h , the mixture was poured into ice-water saturated with $\mathrm{NH}_{4} \mathrm{Cl}\left(20 \mathrm{~cm}^{3}\right)$. The whole was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the extract was washed with water, and dried over MgSO_{4}. Usual workup followed by flash chromatography over silica gel with n-hexane-EtOAc (12:1) gave a $97: 3$ mixture ($2.23 \mathrm{~g}, 88 \%$ combined yield) of the title compound 27 and $(2 R, 3 S)$ isomer. Compound 27 [as a mixture containing 3% of $(2 R, 3 S)$ isomer]: colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 372.0630. $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{BrNO}_{2} \mathrm{~S}$ requires $\left.M+\mathrm{H}, 372.0633\right]$; $[a]_{\mathrm{D}}^{27}$ $-5.50\left(c 0.945\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.10(3 \mathrm{H}, \mathrm{d}$, $J 6.8$, CMe), $1.21(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CMe}), 2.19-2.30(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Me}_{2} \mathrm{C} H\right), 2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.57(1 \mathrm{H}, \mathrm{dd}, J 9.5$ and $4.3,3-\mathrm{H})$, $2.71(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 3.39(1 \mathrm{H}, \mathrm{d}, J 4.3,2-\mathrm{H}), 5.42(1 \mathrm{H}, \mathrm{d}$,

J 1.9, C=CHH), 5.57 ($1 \mathrm{H}, \mathrm{dd}, J 1.9$ and 1.1, $\mathrm{C}=\mathrm{CH} H$), 6.94 ($2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}$); $m / z(\mathrm{FAB}) 374\left(\mathrm{MH}^{+},{ }^{81} \mathrm{Br}\right), 372\left(\mathrm{MH}^{+},{ }^{79} \mathrm{Br}\right), 318$, 316, 190, 188, 183, 167, 119 (base peak), 91 and 55.

(2S,3S)-2-(1-Bromovinyl)-3-(2-methylpropyl)- N-(4-methylphenylsulfonyl)aziridine 28

By a procedure identical with that described for the preparation of the aziridine $\mathbf{2 7}$ from 11, the mesylate $\mathbf{1 7}(2.9 \mathrm{~g}, 6.39 \mathrm{mmol})$ was converted into a $95: 5$ mixture ($1.08 \mathrm{~g}, 47 \%$ combined yield) of the title compound $\mathbf{2 8}$ and its $(2 R, 3 S)$ isomer, by treatment with NaH in DMF-DMSO (3:1) at room temperature for 3 h . The major isomer $\mathbf{2 8}$ was isolated by repeated flash chromatography over silica gel with n-hexane-EtOAc (10:1). Compound 28: colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}, 358.0469$. $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{BrNO}_{2} \mathrm{~S}$ requires $\left.M+\mathrm{H} ; 358.0477\right] ;[a]_{\mathrm{D}}^{30}+30.6$ (c 1.40 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.02(3 \mathrm{H}, \mathrm{d}, J 6.2, \mathrm{CMe})$, $1.03(3 \mathrm{H}, \mathrm{d}, J 6.2, \mathrm{CMe}), 1.73-1.93\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Me}_{2} \mathrm{C} H\right.$ and $\mathrm{Me}_{2} \mathrm{CHCHH}$), 2.21-2.29 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Me}_{2} \mathrm{CHCHH}$), 2.44 ($3 \mathrm{H}, \mathrm{s}$, CMe), $2.82(1 \mathrm{H}$, ddd, $J 9.7,4.3$ and $3.8,3-\mathrm{H}), 3.42(1 \mathrm{H}, \mathrm{d}$, $J 4.3,2-\mathrm{H}), 5.47(1 \mathrm{H}, \mathrm{d}, J 1.9, \mathrm{C}=\mathrm{C} H \mathrm{H}), 5.67(1 \mathrm{H}, \mathrm{dd}, J 1.9$ and $0.8, \mathrm{C}=\mathrm{CH} H), 7.30-7.34(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.83-7.86(2 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}) ; m / z(\mathrm{FAB}) 360\left(\mathrm{MH}^{+},{ }^{81} \mathrm{Br}\right), 358\left(\mathrm{MH}^{+},{ }^{79} \mathrm{Br}\right), 204,202,155$ (base peak), 139, 107 and 91.

(2S,3S)-3-Benzyl-2-(1-bromovinyl)-N-(2,4,6-trimethylphenylsulfonyl)aziridine 29

By a procedure identical with that described for the preparation of the aziridine $\mathbf{2 7}$ from 11, the mesylate $\mathbf{2 5}(670 \mathrm{mg}, 1.3 \mathrm{mmol})$ was converted into a $97: 3$ mixture ($393 \mathrm{mg}, 72 \%$ combined yield) of the title compound 29 and ($2 R, 3 S$) isomer, by treatment with NaH in DMSO at $30^{\circ} \mathrm{C}$ for 2.5 h . The major isomer 29 was isolated by repeated flash chromatography over silica gel with n-hexane-EtOAc (20:1). Compound 29: colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}, 420.0615 . \mathrm{C}_{20} \mathrm{H}_{23} \mathrm{BrNO}_{2} \mathrm{~S}$ requires $M+\mathrm{H}, 420.0633] ;[a]_{\mathrm{D}}^{31}+43.7\left(c 0.856\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 2.31(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.72(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 2.99(1 \mathrm{H}$, ddd, J 9.7, 4.1 and $3.8,3-\mathrm{H}), 3.29(1 \mathrm{H}, \mathrm{dd}, J 14.6$ and 9.7 , PhCHH), 3.54 ($1 \mathrm{H}, \mathrm{dd}, J 14.6$ and 4.1, $\mathrm{PhCH} H$), 3.64 ($1 \mathrm{H}, \mathrm{d}$, $J 3.8,2-\mathrm{H}), 5.43(1 \mathrm{H}, \mathrm{d}, J 2.2, \mathrm{C}=\mathrm{C} H \mathrm{H}), 5.62(1 \mathrm{H}, \mathrm{dd}, J 2.2$ and 1.1, $\mathrm{C}=\mathrm{CH} H), 6.96(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 7.22-7.36(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; m / z$ (FAB) $422\left(\mathrm{MH}^{+},{ }^{81} \mathrm{Br}\right), 420\left(\mathrm{MH}^{+},{ }^{79} \mathrm{Br}\right), 238,236,183,156$, 119 (base peak) and 91.

(2S,3S)-3-Benzyl-2-(1-bromovinyl)-N-(4-methoxy-2,3,6trimethylphenylsulfonyl)aziridine 30

By a procedure identical with that described for the preparation of the aziridine $\mathbf{2 7}$ from 11, the mesylate $\mathbf{2 6}(16.4 \mathrm{~g}, 30$ mmol) was converted into a $97: 3$ mixture ($8.84 \mathrm{~g}, 65 \%$ combined yield) of the title compound $\mathbf{3 0}$ and its $(2 R, 3 S)$ isomer, by treatment with NaH in DMSO at $30^{\circ} \mathrm{C}$ for 2.5 h . Compound 30 [as a mixture containing 3% of $(2 R, 3 S)$ isomer]: colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 450.0714. $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{BrNO}_{3} \mathrm{~S}$ requires $M+\mathrm{H}, 450.0739] ;[a]_{\mathrm{D}}^{31}+33.7\left(c 0.985\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$, CDCl_{3}) $2.16(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe})$, $2.706(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.711(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CMe}), 2.98(1 \mathrm{H}$, ddd, $J 10.0,4.1$ and $3.8,3-\mathrm{H}), 3.30(1 \mathrm{H}$, dd, $J 14.6$ and $10.0, \mathrm{PhCHH}), 3.52$ (1 H , dd, $J 14.6$ and 4.1 , $\mathrm{PhCH} H), 3.64(1 \mathrm{H}, \mathrm{d}, J 3.8,2-\mathrm{H}), 3.86(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.44$ $(1 \mathrm{H}, \mathrm{d}, J 1.9, \mathrm{C}=\mathrm{C} H \mathrm{H}), 5.66(1 \mathrm{H}, \mathrm{dd}, J 1.9$ and 1.1, C=CHH), $6.57(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 7.22-7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; m / z(\mathrm{FAB}) 452\left(\mathrm{MH}^{+}\right.$, $\left.{ }^{81} \mathrm{Br}\right), 450\left(\mathrm{MH}^{+},{ }^{79} \mathrm{Br}\right), 238,236,213,197,150,149$ (base peak), 119 and 91.

General procedure for the dehydrobromination of 2-(1-bromovinyl)aziridines ($27,28,29$, and 30) by exposure to t-BuOK in THF. (2S,3S)-2-Ethynyl-3-isopropyl- N-(2,4,6-trimethylphenylsulfonyl)aziridine 34 and its ($2 R, 3 S$) isomer 35 from 27

To a stirred solution of t-BuOK ($1.5 \mathrm{~g}, 13.4 \mathrm{mmol}$) in THF (15 cm^{3}) under argon was added a solution of the aziridine 27 (2.5
$\mathrm{g}, 6.71 \mathrm{mmol})$ in THF $\left(10 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 30 min with warming to $0^{\circ} \mathrm{C}$ and the mixture was made acidic with saturated citric acid. Concentration under reduced pressure gave a residual oil, which was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with water, and dried over MgSO_{4}. Usual workup followed by flash chromatography over silica gel with n-hexane-EtOAc ($10: 1$) gave, in order of elution, ethynylaziridine 35 ($0.496 \mathrm{~g}, 25 \%$ yield) and 34 ($1.44 \mathrm{~g}, 74 \%$ yield). Compound 34: 98% ee $(2 S, 3 S)$ by HPLC [Daicel Chiralcel OD, n-hexane:propan-2-ol $=98.5: 1.5\left(0.5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\right)$, ($2 S, 3 S$)-isomer $25.9 \mathrm{~min},(2 R, 3 R)$-isomer 28.7 min$]$; colourless crystals, mp $73{ }^{\circ} \mathrm{C}$ [from n-hexane- $\mathrm{Et}_{2} \mathrm{O}$ (10:1)] (Found: C, 65.7; $\mathrm{H}, 7.2 ; \mathrm{N}, 4.6 . \mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}$ requires $\mathrm{C}, 65.95 ; \mathrm{H}, 7.3 ; \mathrm{N}$, $4.8 \%) ;[a]_{\mathrm{D}}^{18}-20.5\left(c 0.440\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.71$ ($3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{CMe}$), $0.90(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CMe}), 1.42-1.54(1 \mathrm{H}$, $\mathrm{m}, \mathrm{Me}_{2} \mathrm{CH}$), $2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe})$, $2.48(1 \mathrm{H}, \mathrm{d}, J 2.0, \mathrm{C} \equiv \mathrm{CH})$, $2.72(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 2.96(1 \mathrm{H}, \mathrm{dd}, J 7.0$ and $4.2,3-\mathrm{H}), 2.99$ $(1 \mathrm{H}, \mathrm{dd}, J 4.2$ and $2.0,2-\mathrm{H})$, 6.94-6.96 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$). Compound 35: 98% ee $(2 R, 3 S)$ by HPLC [Daicel Chiralcel OJ, n-hexane:propan-2-ol $=98.5: 1.5 \quad\left(0.5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\right),(2 R, 3 S)$ isomer $15.8 \mathrm{~min},(2 S, 3 R)$-isomer 17.7 min$]$; colourless crystals, mp $70{ }^{\circ} \mathrm{C}\left[\right.$ from n-hexane- $\left.\mathrm{Et}_{2} \mathrm{O}(5: 1)\right]$ (Found: C, 65.85; H, 7.3; $\mathrm{N}, 4.7 . \mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}$ requires C, $65.95 ; \mathrm{H}, 7.3 ; \mathrm{N}, 4.8 \%$); $[a]_{\mathrm{D}}^{24}$ $-61.6\left(c 0.941\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.84(3 \mathrm{H}, \mathrm{d}$, $J 6.7$, CMe), $1.00(3 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{CMe}), 1.55-1.68(1 \mathrm{H}, \mathrm{m}$, $\mathrm{Me}_{2} \mathrm{C} H$), $2.16(1 \mathrm{H}, \mathrm{d}, J 1.9, \mathrm{C} \equiv \mathrm{CH}), 2.31(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.55$ $(1 \mathrm{H}, \mathrm{dd}, J 9.7$ and $6.8,3-\mathrm{H}), 2.70(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 3.36(1 \mathrm{H}$, dd, $J 6.8$ and $1.9,2-\mathrm{H}), 6.95-6.98(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.

(2S,3S)-2-Ethynyl- N-(4-methylphenylsulfonyl)-3-(2-methylpropy) aziridine 36 and its $(2 R, 3 S)$ isomer 37

By a procedure identical with that described for the preparation of the 2-ethynylaziridines 34 and 35 from 27, the 2-(1-bromovinyl)aziridine 28 ($900 \mathrm{mg}, 2.51 \mathrm{mmol}$) was converted into the ethynylaziridines 36 ($465 \mathrm{mg}, 67 \%$ yield) and $37(135 \mathrm{mg}, 19 \%$ yield), by treatment with t-BuOK in THF at $-78 \rightarrow-20^{\circ} \mathrm{C}$ for 1 h . Compound 36: 98% ee $(2 S, 3 S)$ by HPLC [Daicel Chiralcel OD, n-hexane : propan-2-ol $=98.5: 1.5\left(0.5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\right),(2 S, 3 S)$ isomer 38.2 min]; colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 278.1211. $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{~S}$ requires $\left.M+\mathrm{H}, 278.1215\right]$; $[a]_{\mathrm{D}}^{30}+38.9$ (c 0.812 in CHCl_{3}); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.90(3 \mathrm{H}, \mathrm{d}, J 6.8$, CMe), 0.94 ($3 \mathrm{H}, \mathrm{d}, J 6.2, \mathrm{CMe}$), $1.34-1.45\left(1 \mathrm{H}, \mathrm{m}, \mathrm{Me}_{2}\right.$ $\mathrm{CHCHH}), 1.52-1.71\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Me}_{2} \mathrm{CHCH} H\right.$ and $\left.\mathrm{Me}_{2} \mathrm{CH}\right), 2.45$ $(4 \mathrm{H}, \mathrm{m}, \mathrm{CMe}$ and $\mathrm{C} \equiv \mathrm{CH}), 2.97(1 \mathrm{H}, \mathrm{dd}, J 3.8$ and $1.9,2-\mathrm{H})$, $3.09(1 \mathrm{H}, \mathrm{ddd}, J 6.8,6.8$ and $3.8,3-\mathrm{H}), 7.32-7.35(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, 7.86-7.89 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); $m / z(\mathrm{FAB}) 278\left(\mathrm{MH}^{+}\right.$, base peak). Compound 37: 98% ee $(2 R, 3 S)$ by HPLC [Daicel Chiralcel OJ, n-hexane: propan-2-ol $=93: 7\left(0.5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\right),(2 R, 3 S)$-isomer 20.9 min]; colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}, 278.1223$. $\left.\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{~S} \mathrm{M}+\mathrm{H}, 278.1215\right] ;[a]_{\mathrm{D}}^{30}-88.2\left(c 0.839\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.920(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CMe}), 0.923(3 \mathrm{H}, \mathrm{d}$, $J 6.5, \mathrm{CMe}), 1.48-1.54\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Me}_{2} \mathrm{CHCH}_{2}\right), 1.61-1.76(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{Me}_{2} \mathrm{CH}\right), 2.20(1 \mathrm{H}, \mathrm{d}, J 1.9, \mathrm{C} \equiv \mathrm{CH}), 2.45(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe})$, $2.95(1 \mathrm{H}$, ddd, $J 7.0,6.5$ and $6.5,3-\mathrm{H}), 3.32(1 \mathrm{H}, \mathrm{dd}, J 7.0$ and 1.9, 2-H), 7.33-7.37 (2 H, m, Ph), 7.82-7.86 (2 H, m, Ph); m / z (FAB) $278\left(\mathrm{MH}^{+}\right.$, base peak).

(2S,3S)-3-Benzyl-2-ethynyl- N -(2,4,6-trimethylphenylsulfonyl)aziridine 38 and its $(2 R, 3 S)$ isomer 39

By a procedure identical with that described for the preparation of the 2-ethynylaziridines $\mathbf{3 4}$ and $\mathbf{3 5}$ from 27, the 2-(1-bromovinyl)aziridine $29(1.33 \mathrm{~g}, 3.16 \mathrm{mmol})$ was converted into the 2-ethynylaziridines 38 ($558 \mathrm{mg}, 52 \%$ yield) and 39 (302 mg , 28% yield), by treatment with t-BuOK in THF at $-78 \rightarrow-20^{\circ} \mathrm{C}$ for 1 h . Compound 38: 98% ee $(2 S, 3 S)$ by HPLC [Daicel Chiralcel OD, n-hexane: propan-2-ol $=96: 4\left(0.5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\right)$, ($2 S, 3 S$)-isomer 35.3 min]; colourless needles, $\mathrm{mp} 104^{\circ} \mathrm{C}$ [from n-hexane- $\mathrm{Et}_{2} \mathrm{O}$ (1:1)] (Found: C, 70.85; H, 6.3; N, 3.8. $\mathrm{C}_{20} \mathrm{H}_{21}{ }^{-}$ $\mathrm{NO}_{2} \mathrm{~S}$ requires $\mathrm{C}, 70.8 ; \mathrm{H}, 6.2 ; \mathrm{N}, 4.1 \%$); $[a]_{\mathrm{D}}^{29}+9.76$ (c 1.23 in
$\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.31(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.49(1 \mathrm{H}, \mathrm{d}$, $J 2.2, \mathrm{C} \equiv \mathrm{CH}), 2.55(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 2.59(1 \mathrm{H}, \mathrm{dd}, J 14.0$ and 7.3, PhCHH), 3.01 ($1 \mathrm{H}, \mathrm{dd}, J 14.0$ and 4.3, $\mathrm{PhCH} H$), 3.07 $(1 \mathrm{H}, \mathrm{dd}, J 3.8$ and $2.2,2-\mathrm{H}), 3.33(1 \mathrm{H}$, ddd, $J .3 .4 .3$ and 3.8 , $3-\mathrm{H}), 6.86(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 6.87-6.92(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.02-7.16(3 \mathrm{H}$, m , Ph). Compound 39: 98% ee $(2 R, 3 S)$ by HPLC [Daicel Chiralcel OJ, n-hexane:propan-2-ol = 97:3 ($0.5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$), ($2 R, 3 S$)-isomer 61.8 min]; colourless prisms, $\mathrm{mp} 100^{\circ} \mathrm{C}$ [from n-hexane- $\mathrm{Et}_{2} \mathrm{O}$ (1:1)] (Found: C, 70.5; H, 6.4; N, 3.9. $\mathrm{C}_{20} \mathrm{H}_{21}{ }^{-}$ $\mathrm{NO}_{2} \mathrm{~S}$ requires C, 70.8; H, 6.2; N, 4.1\%); [a $]_{\mathrm{D}}^{28}-61.9$ (c 1.65 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.297(1 \mathrm{H}, \mathrm{d}, J 2.2, \mathrm{C} \equiv \mathrm{CH})$, $2.304(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.58(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 2.81(1 \mathrm{H}, \mathrm{dd}$, $J 14.6$ and $7.0, \mathrm{PhCHH}), 2.96(1 \mathrm{H}, \mathrm{dd}, J 14.6$ and 5.7 , PhCH H), $3.07(1 \mathrm{H}$, ddd, $J 7.0,6.8$ and $5.7,3-\mathrm{H}), 3.44(1 \mathrm{H}$, dd, $J 6.8$ and $2.2,2-\mathrm{H}), 6.88(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 7.04-7.16(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.

(2S,3S)-3-Benzyl-2-ethynyl- N -(4-methoxy-2,3,6-trimethylphenylsulfonyl)aziridine 40 and its ($2 R, 3 S$) isomer 41

By a procedure identical with that described for the preparation of the 2-ethynylaziridines $\mathbf{3 4}$ and $\mathbf{3 5}$ from 27, the 2-(1-bromovinyl)aziridine 30 ($7.5 \mathrm{~g}, 16.7 \mathrm{mmol}$) was converted into the 2-ethynylaziridine $40(2.88 \mathrm{~g}, 47 \%$ yield) and $41(1.55 \mathrm{~g}, 25 \%$ yield), by treatment with t-BuOK in THF at $-78 \rightarrow-20^{\circ} \mathrm{C}$ for 1 h . Compound 40: 98% ee $(2 S, 3 S)$ by HPLC [Daicel Chiralcel OD, n-hexane:propan-2-ol $=97: 3\left(0.5 \mathrm{~cm}^{3} \min ^{-1}\right),(2 S, 3 S)$ isomer 46.9 min]; colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 370.1482. $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{~S}$ requires $\left.M+\mathrm{H}, 370.1477\right] ;[a]_{\mathrm{D}}^{28}+3.59(c$ 0.781 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.12(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.48$ ($1 \mathrm{H}, \mathrm{d}, J 2.2, \mathrm{C}=\mathrm{CH}$), $2.53(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe})$, $2.54(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe})$, 2.58 ($1 \mathrm{H}, \mathrm{dd}, J 14.6$ and $7.6, \mathrm{PhCHH}$), $3.01(1 \mathrm{H}, \mathrm{dd}, J 14.6$ and 5.1, $\mathrm{PhCH} H), 3.06(1 \mathrm{H}, \mathrm{dd}, J 4.1$ and $2.2,2-\mathrm{H}), 3.32(1 \mathrm{H}$, ddd, $J 7.6,5.1$ and $4.1,3-\mathrm{H}), 3.86(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.46(1 \mathrm{H}, \mathrm{s}$, Ph), 6.88-6.92 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.01-7.13 (3 H, m, Ph); m/z (FAB) $370\left(\mathrm{MH}^{+}\right), 213,197,156$ (base peak), 150, 149, 119 and 91. Compound 41: 98% ee $(2 R, 3 S)$ by HPLC [Daicel Chiralcel OJ, n-hexane: propan-2-ol $=93: 7\left(0.5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\right),(2 R, 3 S)$-isomer 44.3 min]; colourless needles $\mathrm{mp} 90^{\circ} \mathrm{C}$ [from n-hexane- $\mathrm{Et}_{2} \mathrm{O}$ (2:1)] (Found: C, 68.2; H, 6.3; N, 3.7. $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}$ requires C, $68.3 ; \mathrm{H}, 6.3 ; \mathrm{N}, 3.8 \%)$; $[a]_{\mathrm{D}}^{28}-56.3$ (c 1.13 in CHCl_{3}); $\delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.11(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.29(1 \mathrm{H}, \mathrm{d}, J 1.9, \mathrm{C}=\mathrm{CH})$, $2.55(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.57(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.79(1 \mathrm{H}, \mathrm{dd}, J 14.3$ and 7.6, PhCHH), $2.96(1 \mathrm{H}, \mathrm{dd}, J 14.3$ and $5.4, \mathrm{PhCH} H), 3.04$ $(1 \mathrm{H}$, ddd, $J .6,6.8$ and $5.4,3-\mathrm{H}), 3.44(1 \mathrm{H}$, dd, $J 6.8$ and 1.9 , 2-H), $3.86(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.47(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 7.02-7.12(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph})$.

(3S,4S)-4-[N-(tert-Butoxycarbonyl)amino]-5-methyl-1-trimethylsilylhex-1-yn-3-ol 43 and its ($\mathbf{3 R}, 4 S$)-isomer 44

To a stirred solution of oxalyl chloride ($15.4 \mathrm{~cm}^{3}, 148 \mathrm{mmol}$) in a mixed solvent of $\mathrm{CHCl}_{3}\left(70 \mathrm{~cm}^{3}\right)$ and n-hexane $\left(50 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ under argon was added dropwise a solution of DMSO ($40 \mathrm{~cm}^{3}$, 493 mmol) in $\mathrm{CHCl}_{3}\left(15 \mathrm{~cm}^{3}\right.$). After 45 min , a solution of the alcohol $42(20 \mathrm{~g}, 98.5 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}\left(50 \mathrm{~cm}^{3}\right)$ was added to the above reagent at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 1 h at this temperature. Diisopropylethylamine (120 $\mathrm{cm}^{3}, 690 \mathrm{mmol}$) was added to the above solution at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 30 min with warming to $0^{\circ} \mathrm{C}$. The mixture was made acidic with saturated aqueous citric acid, and the whole was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed successively with water, $5 \% \mathrm{NaHCO}_{3}$, and water, and dried over MgSO_{4}. Usual workup gave a crude aldehyde. To a stirred solution of trimethylsilylacetylene ($34.8 \mathrm{~cm}^{3}, 246 \mathrm{mmol}$) in dry THF ($50 \mathrm{~cm}^{3}$) under argon was added $n-\operatorname{BuLi}(1.52 \mathrm{M}$ in n-hexane; $162 \mathrm{~cm}^{3}, 246 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 20 min at this temperature. The crude aldehyde in dry THF ($50 \mathrm{~cm}^{3}$) was added to the above reagent at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 2 h at this temperature, followed by quenching with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(20 \mathrm{~cm}^{3}\right)$. The whole was extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the extract was washed
successively with 5% aqueous citric acid, water, 5% aqueous NaHCO_{3}, and water, and dried over MgSO_{4}. Usual workup followed by flash chromatography over silica gel with n-hexaneEtOAc ($8: 1$) gave, in order of elution, the title compound 43 ($9.15 \mathrm{~g}, 31 \%$ yield) and 44 ($7.23 \mathrm{~g}, 25 \%$ yield). Compound 43 colourless crystals, $\mathrm{mp} 72-73^{\circ} \mathrm{C}$ (from n-hexane) (Found: C, 59.9; H, 10.0; N, 4.8. $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{Si}$ requires C, $60.2 ; \mathrm{H}, 9.8 ; \mathrm{N}$, $4.7 \%) ;[a]_{\mathrm{D}}^{24}+1.90\left(c 1.16\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.16$ $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 0.93(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CMe}), 0.98(3 \mathrm{H}, \mathrm{d}, J 6.5$, CMe), 1.46 ($9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}$), $2.00-2.12(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.84(1 \mathrm{H}$, d, $J 5.7, \mathrm{OH}), 3.44(1 \mathrm{H}$, ddd, $J 9.5,7.0$ and $5.7,4-\mathrm{H}), 4.43(1 \mathrm{H}$, dd, $J 5.7$ and $5.7,3-\mathrm{H}), 4.81(1 \mathrm{H}, \mathrm{d}, J 9.5, \mathrm{NH})$. Compound 44 : colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}, 300.1999 . \mathrm{C}_{15} \mathrm{H}_{30} \mathrm{NO}_{3}{ }^{-}$ Si requires $M+\mathrm{H}, 300.1995]$; $[a]_{\mathrm{D}}^{24}-99.7$ ($c 0.662$ in CHCl_{3}); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.18\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 0.98(6 \mathrm{H}, \mathrm{d}, J 7.0$, CMe_{2}), $1.47\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right.$), $1.72-1.85(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.20(1 \mathrm{H}$, d, $J 7.3, \mathrm{OH}), 3.53-3.61(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.52(1 \mathrm{H}, \mathrm{dd}, J 7.3$ and 3.2, 3-H), $4.66(1 \mathrm{H}, \mathrm{d}, J 9.7, \mathrm{NH}) ; m / z(\mathrm{FAB}) 300\left(\mathrm{MH}^{+}\right), 244$ (base peak), 226, 116, 73, 72, and 57.

(3S,4S)-5-Methyl-4-[N-(2,4,6-trimethylphenylsulfonyl)amino]-1-trimethylsilylhex-1-yn-3-ol 45

By a procedure similar to that described for the preparation of 21 from 19, $43(2.1 \mathrm{~g}, 7.0 \mathrm{mmol})$ was converted into the title compound 45 ($1.76 \mathrm{~g}, 66 \%$ yield) as colourless needles, mp $107^{\circ} \mathrm{C}$ [from n-hexane- $\mathrm{Et}_{2} \mathrm{O}(2: 1)$] (Found: C, $60.0 ; \mathrm{H}, 8.0 ; \mathrm{N}$, 3.7. $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{SSi}$ requires $\left.\mathrm{C}, 59.8 ; \mathrm{H}, 8.2 ; \mathrm{N}, 3.7 \%\right) ;[a]_{\mathrm{D}}^{20}-62.8$ (c 1.38 in CHCl_{3}); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.15\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right)$, 0.69 ($3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CMe}$), 0.85 ($3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CMe}$), $2.05-2.17$ $(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.61(1 \mathrm{H}, \mathrm{d}, J 5.4, \mathrm{OH}), 2.67$ $(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 3.20(1 \mathrm{H}$, ddd, $J 10.0,6.8$ and $3.8,4-\mathrm{H}), 4.29$ $(1 \mathrm{H}, \mathrm{dd}, J 6.8$ and $5.4,3-\mathrm{H}), 4.86(1 \mathrm{H}, \mathrm{d}, J 10.0, \mathrm{NH}), 6.95$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}$).

(3S,4S)-5-Methyl-4-[N-(2,4,6-trimethylphenylsulfonyl)amino]-hex-1-yn-3-ol 46

To a stirred solution of $\mathbf{4 5}(1.55 \mathrm{~g}, 4.06 \mathrm{mmol})$ in THF $\left(15 \mathrm{~cm}^{3}\right)$ was added dropwise tetrabutylammonium fluoride $(1.0 \mathrm{M}$ in THF; $4.06 \mathrm{~cm}^{3}, 4.06 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 15 min at this temperature. The mixture was made acidic with saturated aqueous citric acid, followed by concentration under reduced pressure to give a residual oil, which was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with water, and dried over MgSO_{4}. Concentration under reduced pressure gave a crystalline mass, which was recrystallized from n-hexane$\mathrm{Et}_{2} \mathrm{O}(2: 1)$ to give the title compound $\mathbf{4 6}(1.21 \mathrm{~g}, 96 \%$ yield) as colourless needles, 98% ee $(3 S, 4 S)$ by HPLC [Daicel Chiralcel OD, n-hexane: propan- 2 -ol $=96: 4\left(0.5 \mathrm{~cm}^{3} \min ^{-1}\right),(3 S, 4 S)$ isomer 42.3 min]; $\mathrm{mp} 138^{\circ} \mathrm{C}$ [from n-hexane- $\mathrm{Et}_{2} \mathrm{O}$ (2:1)] (Found: C, 62.0; H, 7.4; N, 4.5. $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}$ requires C, 62.1; H, $7.5 ; \mathrm{N}, 4.5 \%$); $[a]_{\mathrm{D}}^{25}-32.4$ (c 0.978 in CHCl_{3}); $\delta_{\mathrm{H}}(270 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.72(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CMe}), 0.88(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CMe})$, 2.01-2.14 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), $2.27(1 \mathrm{H}, \mathrm{d}, J 1.9,1-\mathrm{H}), 2.29(3 \mathrm{H}, \mathrm{s}$, CMe), 2.62-2.66 ($1 \mathrm{H}, \mathrm{m}, \mathrm{OH}$), $2.66(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 3.23$ $(1 \mathrm{H}$, ddd, $J 9.5,5.4$ and $5.4,4-\mathrm{H}), 4.37(1 \mathrm{H}$, ddd, $J 5.4,5.4$ and $1.9,3-\mathrm{H}), 4.95(1 \mathrm{H}, \mathrm{d}, J 9.5, \mathrm{NH}), 6.94(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph})$.

(3R,4S)-5-Methyl-4-[N-(2,4,6-trimethylphenylsulfonyl)amino]-1-trimethylsilylhex-1-yn-3-ol 47

By a procedure identical with that described for the preparation of 21 from $\mathbf{1 9 , 4 4 (2 . 1 0 \mathrm { g } , 7 . 0 \mathrm { mmol }) \text { was converted into the title }}$ compound $47(2.00 \mathrm{~g}, 75 \%$ yield). 98% ee $(3 R, 4 S)$ by HPLC [Daicel Chiralcel OD, n-hexane:propan-2-ol $=98: 2 \quad(0.5$ $\left.\mathrm{cm}^{3} \mathrm{~min}^{-1}\right)$, $(3 R, 4 S)$-isomer 22.4 min]; colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 382.1877. $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{SSi}$ requires $M+\mathrm{H}$, 382.1872]; $[a]_{\mathrm{D}}^{23}-81.2\left(c 1.30\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 0.19 ($9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}$), $0.86(3 \mathrm{H}, \mathrm{d}, J 6.5$, CMe), $0.91(3 \mathrm{H}, \mathrm{d}$, J 7.0, CMe), 1.69-1.82 (1 H, m, 5-H), $2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.45$
($1 \mathrm{H}, \mathrm{d}, J 9.5, \mathrm{OH}$), $2.68(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 3.17(1 \mathrm{H}$, ddd, $J 10.0,7.0$ and $2.4,4-\mathrm{H}), 4.40(1 \mathrm{H}, \mathrm{dd}, J 9.5$ and $2.4,3-\mathrm{H}), 4.92$ ($1 \mathrm{H}, \mathrm{d}, J 10.0, \mathrm{NH}), 6.97(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph})$; m/z (FAB) $382\left(\mathrm{MH}^{+}\right)$, 364, 254, 183, 167, 119 (base peak), 73 and 72.

(3R,4S)-5-Methyl-4-[N-(2,4,6-trimethylphenylsulfonyl)amino]-hex-1-yn-3-ol 48

By a procedure identical with that described for the preparation of $\mathbf{4 6}$ from $\mathbf{4 5}, 47(1.8 \mathrm{~g}, 4.72 \mathrm{mmol})$ was converted into the title compound $48(1.21 \mathrm{~g}, 83 \%$ yield $)$ as colourless crystals, 98% ee $(3 R, 4 S)$ by HPLC [Daicel Chiralcel OD, n-hexane:propan- 2 ol $=98: 4\left(0.5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\right),(3 R, 4 S)$-isomer 34.2 min$] ; \mathrm{mp} 122^{\circ} \mathrm{C}$ [from n-hexane- $\mathrm{Et}_{2} \mathrm{O}$ (2:1)] (Found: C, 62.0; H, 7.55; N, 4.5 . $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}$ requires C, 62.1; H, 7.5; N, 4.5%); $[a]_{\mathrm{D}}^{23}-55.6$ (c 0.774 in CHCl_{3}); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.846(3 \mathrm{H}, \mathrm{d}, J 7.0$, CMe), 0.853 (3 H, d, J6.8, CMe), 1.72-1.85 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), 2.30 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), $2.55(1 \mathrm{H}, \mathrm{d}, J 1.9,1-\mathrm{H}), 2.67(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe})$, $2.88(1 \mathrm{H}, \mathrm{d}, J 9.7, \mathrm{OH}), 3.15(1 \mathrm{H}$, ddd, $J 10.3,7.6$ and 3.0 , $4-\mathrm{H}), 4.45(1 \mathrm{H}$, ddd, $J 9.7,3.0$ and $1.9,3-\mathrm{H}), 4.95(1 \mathrm{H}, \mathrm{d}$, J 10.3, NH), 6.97 ($2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}$).

(3S,4S)-4-[N-(tert-Butoxycarbonyl)amino]-5-methylhex-1-yn-3-

 ol 49By a procedure identical with that described for the preparation of 46 from 45, 43 ($3.0 \mathrm{~g}, 7.96 \mathrm{mmol}$) was converted into the title compound 49 ($1.66 \mathrm{~g}, 72 \%$ yield) as colourless needles, $\mathrm{mp} 42-$ $43^{\circ} \mathrm{C}$ [from n-hexane- $\mathrm{Et}_{2} \mathrm{O}$ (3:1)] (Found: C, 63.3; H, 9.25; N, 6.2. $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{3}$ requires C, $63.4 ; \mathrm{H}, 9.3 ; \mathrm{N}, 6.2 \%$); $[a]_{\mathrm{D}}^{21}-8.75$ (c 0.869 in CHCl_{3}); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.94(3 \mathrm{H}, \mathrm{d}, J 6.5$, CMe), $0.99(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CMe}), 1.46\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right), 2.05-2.18$ $(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.47(1 \mathrm{H}, \mathrm{d}, J 1.4,1-\mathrm{H}), 3.06(1 \mathrm{H}, \mathrm{d}, J 5.4, \mathrm{OH})$, 3.42-3.51 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), 4.42-4.48 ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$), $4.83(1 \mathrm{H}, \mathrm{d}$, $J 9.2, \mathrm{NH}$).

(3R,4S)-4-[N-(tert-Butoxycarbonyl)amino]-5-methylhex-1-yn-3ol 50

By a procedure identical with that described for the preparation of 46 from $45,44(1.5 \mathrm{~g}, 5.0 \mathrm{mmol})$ was converted into the title compound $50(1.03 \mathrm{~g}, 91 \%$ yield) as colourless needles, mp $81^{\circ} \mathrm{C}$ [from n-hexane- $\mathrm{Et}_{2} \mathrm{O}$ (3:1)] (Found: C, 63.2; H, 9.3; N, 5.9. $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{3}$ requires C, $63.4 ; \mathrm{H}, 9.3 ; \mathrm{N}, 6.2 \%$); $[\alpha]_{\mathrm{D}}^{29}-84.3$ (c 1.01 in CHCl_{3}); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.97-1.01(6 \mathrm{H}, \mathrm{m}$, $2 \times \mathrm{CMe}), 1.46\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right), 1.72-1.86(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.46$ $(1 \mathrm{H}, \mathrm{d}, J 2.2,1-\mathrm{H}), 3.30(1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{OH}), 3.59(1 \mathrm{H}, \mathrm{ddd}$, $J 9.2,8.9$ and $3.5,4-\mathrm{H}), 4.53-4.58(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.70(1 \mathrm{H}, \mathrm{d}$, $J 8.9, \mathrm{NH})$.

(3S,4S)-4-[N-(tert-Butoxycarbonyl)amino]-5-(tert-butyl-dimethylsiloxy)-1-trimethylsilylpent-1-yn-3-ol 52 and its (3R,4S)-isomer 53

To a stirred solution of the ester $\mathbf{5 1}(32 \mathrm{~g}, 96 \mathrm{mmol})$ in toluene $\left(200 \mathrm{~cm}^{3}\right)$ was added dropwise DIBAL-H (1.0 M in toluene; $192 \mathrm{~cm}^{3}, 192 \mathrm{mmol}$) over 30 min at $-78^{\circ} \mathrm{C}$ under argon, and the mixture was stirred for 1 h at this temperature. Saturated aqueous citric acid $\left(100 \mathrm{~cm}^{3}\right)$ was added to the mixture, and the whole was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with water and brine, and dried over MgSO_{4}. Concentration under reduced pressure gave a crude aldehyde. To a stirred solution of trimethylsilylacetylene ($34.0 \mathrm{~cm}^{3}, 240 \mathrm{mmol}$) in dry THF (100 cm^{3}) under argon was added n-BuLi (1.53 M in n-hexane; 157 $\mathrm{cm}^{3}, 240 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 30 min at this temperature. The crude aldehyde in dry THF $\left(50 \mathrm{~cm}^{3}\right)$ was added to the above reagent at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 1 h at this temperature, followed by quenching with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(20 \mathrm{~cm}^{3}\right)$. The whole was extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the extract was washed successively with saturated aqueous citric acid, water, saturated aqueous NaHCO_{3}, and water, and dried over MgSO_{4}. Usual workup followed by
flash chromatography over silica gel with n-hexane- $\mathrm{Et}_{2} \mathrm{O}(10: 3)$ gave, in order of elution, the title compound $52(6.86 \mathrm{~g}, 18 \%$ yield), and 53 ($5.03 \mathrm{~g}, 13 \%$ yield). Compound 52: colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 402.2505. $\mathrm{C}_{19} \mathrm{H}_{40} \mathrm{NO}_{4} \mathrm{Si}_{2}$ requires $M+\mathrm{H}, 402.2496]$; $[\alpha]_{\mathrm{D}}^{22}+2.23\left(c 1.35\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$ $\left.\mathrm{CDCl}_{3}\right) 0.09\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.17\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 0.90(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CMe}_{3}\right), 1.46\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right), 3.44(1 \mathrm{H}, \mathrm{d}, J 5.4, \mathrm{OH}), 3.74-3.90$ $\left(3 \mathrm{H}, \mathrm{m}, 5-\mathrm{CH}_{2}\right.$ and $\left.4-\mathrm{H}\right), 4.54(1 \mathrm{H}, \mathrm{dd}, J 5.4$ and $5.1,3-\mathrm{H})$, 4.97-5.06 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NH}$); $m / z(\mathrm{FAB}) 402\left(\mathrm{MH}^{+}\right), 346,303,302$ (base peak), 288, 218, 174, 89, 75, 73 and 57. Compound 53: colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}, 402.2490 . \mathrm{C}_{19} \mathrm{H}_{40} \mathrm{NO}_{4}{ }^{-}$ Si_{2} requires $\left.M+\mathrm{H}, 402.2496\right]$; $[a]_{\mathrm{D}}^{22}+3.11\left(c 0.996\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.09(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.11(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe})$, $0.18\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 0.91\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right), 1.46\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right)$, $3.65(1 \mathrm{H}, \mathrm{d}, J 9.5, \mathrm{OH}), 3.74-3.81(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $5-\mathrm{CHH})$, 4.19-4.27 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{CH} H), 4.50(1 \mathrm{H}$, dd, $J 9.5$ and $4.1,3-\mathrm{H})$, 5.24 ($1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{NH}) ; m / z(\mathrm{FAB}) 402\left(\mathrm{MH}^{+}\right), 346,303,302$ (base peak), 288, 218, 174, 89, 75, 73 and 57.
(3S,4S)-5-(tert-Butyldimethylsiloxy)-4-[N-(2,4,6-trimethyl-phenylsulfonyl)amino]-1-trimethylsilylpent-1-yn-3-ol 54 and (2S,3S)-2-[N-(2,4,6-trimethylphenylsulfonyl)amino]-5-trimethyl-silylpent-4-yne-1,3-diol 55
By a procedure similar to that described for the preparation of 21 from $19,52(3.01 \mathrm{~g}, 7.5 \mathrm{mmol})$ was converted into the title compound 54 ($2.26 \mathrm{~g}, 62 \%$ yield) and $55(471 \mathrm{mg}, 17 \%$ yield). Compound 54: colourless crystals, $\mathrm{mp} 84^{\circ} \mathrm{C}$ (from n-hexane) [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 484.2366. $\mathrm{C}_{23} \mathrm{H}_{42} \mathrm{NO}_{4} \mathrm{SSi}_{2}$ requires $M+\mathrm{H}, 484.2373]$; $[a]_{\mathrm{D}}^{23}-11.2\left(c 0.845\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.04\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.15\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 0.87(9 \mathrm{H}, \mathrm{s}$, CMe_{3}), $2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.66(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 3.26(1 \mathrm{H}, \mathrm{d}$, $J 5.1, \mathrm{OH}), 3.26-3.35(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.53(1 \mathrm{H}, \mathrm{dd}, J 10.3$ and $5.7,5-\mathrm{CH} \mathrm{H}), 3.85(1 \mathrm{H}, \mathrm{dd}, J 10.3$ and $3.0,5-\mathrm{CH} H), 4.36(1 \mathrm{H}$, dd, $J 6.2$ and $5.1,3-\mathrm{H}), 5.17(1 \mathrm{H}, \mathrm{d}, J 9.2, \mathrm{NH}), 6.96(2 \mathrm{H}, \mathrm{s}$, $\mathrm{Ph}) ; m / z(\mathrm{FAB}) 484\left(\mathrm{MH}^{+}\right), 468,426,356,173,119,89,75$ and 73 (base peak). Compound 55: colourless crystals, $\mathrm{mp} 95^{\circ} \mathrm{C}$ [from n-hexane- $\mathrm{Et}_{2} \mathrm{O}$ (2:1)] (Found: C, $55.2 ; \mathrm{H}, 7.5 ; \mathrm{N}, 3.7$. $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{SSi}$ requires $\left.\mathrm{C}, 55.25 ; \mathrm{H}, 7.4 ; \mathrm{N}, 3.8 \%\right)$; $[a]_{\mathrm{D}}^{23}-16.1$ (c 0.843 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.15\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right)$, $2.27(1 \mathrm{H}, \mathrm{dd}, J 5.4$ and $5.4,1-\mathrm{OH}), 2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.67$ $(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 2.72(1 \mathrm{H}, \mathrm{d}, J 4.1,3-\mathrm{OH}), 3.24-3.33(1 \mathrm{H}, \mathrm{m}$, $2-\mathrm{H}), 3.72(1 \mathrm{H}$, ddd, $J 11.9,6.5$ and $5.4,1-\mathrm{CHH}), 3.86(1 \mathrm{H}$, ddd, $J 11.9,5.4$ and $3.5,1-\mathrm{CH} H), 4.48(1 \mathrm{H}, \mathrm{dd}, J 4.9$ and 4.1 , $3-\mathrm{H}), 5.30$ ($1 \mathrm{H}, \mathrm{d}, J 7.6, \mathrm{NH}$), 6.97 ($2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}$).

(3S,4S)-5-(tert-Butyldimethylsiloxy)-4-[N-(2,4,6-trimethyl-phenylsulfonyl)amino]-1-trimethylsilylpent-1-yn-3-ol 54 from 55

To a stirred solution of $\mathbf{5 5}(450 \mathrm{mg}, 1.21 \mathrm{mmol})$ in a mixed solvent of $\mathrm{CHCl}_{3}\left(3 \mathrm{~cm}^{3}\right)$ and DMF ($3 \mathrm{~cm}^{3}$) were added imidazole ($98.6 \mathrm{mg}, 1.45 \mathrm{mmol}$) and tert-butyldimethylsilyl chloride ($219 \mathrm{mg}, 1.45 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 2 h at this temperature. Saturated aqueous $\mathrm{NaHCO}_{3}\left(2 \mathrm{~cm}^{3}\right)$ was added to the mixture, and the whole was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed successively with saturated aqueous citric acid, water, saturated aqueous NaHCO_{3}, and water, and dried over MgSO_{4}. Usual workup followed by flash chromatography over silica gel with n-hexane-EtOAc (6:1) gave the title compound $\mathbf{5 4}$ ($490 \mathrm{mg}, 83 \%$ yield) as colourless crystals from n-hexane.

(3S,4S)-5-(tert-Butyldimethylsiloxy)-4-[N-(2,4,6-trimethyl-phenylsulfonyl)aminolpent-1-yn-3-ol 56

To a stirred solution of $54(2.64 \mathrm{~g}, 5.45 \mathrm{mmol})$ in MeOH (15 cm^{3}) was added dropwise NaOMe (1.0 M solution in MeOH ; $0.545 \mathrm{~cm}^{3}, 0.545 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 4.5 h at room temperature. Concentration under reduced pressure gave a crystalline mass, which was filtered though a short pad of SiO_{2} with n-hexane- $\mathrm{CHCl}_{3}(1: 1)$. Recrystallization from
n-hexane- $-\mathrm{Et}_{2} \mathrm{O}(1: 1)$ gave the title compound $56(2.03 \mathrm{~g}, 90 \%$ yield) as colourless crystals, 97% ee ($3 S, 4 S$) by HPLC [Daicel Chiralcel OD, n-hexane:propan-2-ol $=95: 5\left(0.5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\right)$, ($3 R, 4 R$)-isomer $18.3 \mathrm{~min},(3 S, 4 S)$-isomer 19.9 min$] ; \mathrm{mp} 117^{\circ} \mathrm{C}$ [n-hexane- $\mathrm{Et}_{2} \mathrm{O}$ (1:1)] (Found: C, 58.1; H, 8.2; N, 3.4. $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{SSi}$ requires C, $\left.58.4 ; \mathrm{H}, 8.1 ; \mathrm{N}, 3.4 \%\right)$; $[a]_{\mathrm{D}}^{24}+21.7$ (c 0.813 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.04\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right)$, $0.87\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right), 2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.33(1 \mathrm{H}, \mathrm{d}, J 1.9$, $\mathrm{C} \equiv \mathrm{CH}), 2.66(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 3.23(1 \mathrm{H}, \mathrm{d}, J 5.1, \mathrm{OH}), 3.29-$ $3.38(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.59(1 \mathrm{H}, \mathrm{dd}, J 10.3$ and $5.9,5-\mathrm{CHH}), 3.83$ $(1 \mathrm{H}, \mathrm{dd}, J 10.3$ and $3.0,5-\mathrm{CH} H), 4.43(1 \mathrm{H}$, ddd, $J 5.1,5.1$ and $1.9,3-\mathrm{H}), 5.21$ ($1 \mathrm{H}, \mathrm{d}, J 9.5, \mathrm{NH}$), 6.96 ($2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}$).

(3R,4S)-5-(tert-Butyldimethylsiloxy)-4-[N-(2,4,6-trimethyl-phenylsulfonyl)amino]-1-trimethylsilylpent-1-yn-3-ol 57 and ($2 S, 3 R$)-2-[N-(2,4,6-trimethylphenylsulfonyl)amino]-5-trimethylsilylpent-4-yne-1,3-diol 58

By a procedure identical with that described for the preparation of 21 from 19, 53 ($2.41 \mathrm{~g}, 6 \mathrm{mmol}$) was converted into the title compound 57 ($1.49 \mathrm{~g}, 51 \%$ yield) and 58 ($315 \mathrm{mg}, 14 \%$ yield). Compound 57: 92% ee ($3 R, 4 S$) by HPLC [Daicel Chiralcel OD, n-hexane: propan-2-ol $=98: 2\left(0.5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\right),(3 S, 4 R)$-isomer $15.6 \mathrm{~min},(3 R, 4 S)$-isomer 17.1 min]; colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}, 484.2376 . \mathrm{C}_{23} \mathrm{H}_{42} \mathrm{NO}_{4} \mathrm{SSi}_{2}$ requires $M+\mathrm{H}$, $484.2373] ;[a]_{\mathrm{D}}^{26}+4.40\left(c 0.955\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 0.02 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), $0.04(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.16\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right)$, $0.87\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right), 2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.66(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe})$, $3.15(1 \mathrm{H}, \mathrm{d}, J 9.5, \mathrm{OH}), 3.32-3.39(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.60(1 \mathrm{H}, \mathrm{dd}$, $J 10.3$ and $4.3,5-\mathrm{C} H \mathrm{H}), 4.08(1 \mathrm{H}, \mathrm{dd}, J 10.3$ and $3.2,5-\mathrm{CH} H)$, $4.36(1 \mathrm{H}, \mathrm{dd}, J 9.5$ and $3.2,3-\mathrm{H}), 5.35(1 \mathrm{H}, \mathrm{d}, J 9.2, \mathrm{NH}), 6.96$ $(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}) ; m / z(\mathrm{FAB}) 484\left(\mathrm{MH}^{+}\right), 468,426,356,283,183,173$, 119, 89 and 73 (base peak). Compound 58: colourless crystals, $\mathrm{mp} 95^{\circ} \mathrm{C}$ [from n-hexane- $\mathrm{Et}_{2} \mathrm{O}(2: 1)$] (Found: C, $55.0 ; \mathrm{H}, 7.2$; $\mathrm{N}, 3.9 . \mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{SSi}$ requires $\left.\mathrm{C}, 55.25 ; \mathrm{H}, 7.4 ; \mathrm{N}, 3.8 \%\right) ;[a]_{\mathrm{D}}^{26}$ $-16.0\left(c 0.562\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.17(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiMe}_{3}\right), 2.25(1 \mathrm{H}, \mathrm{dd}, J 8.4$ and $4.3,1-\mathrm{OH}), 2.31(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe})$, 2.67 ($6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}$), 2.77 ($1 \mathrm{H}, \mathrm{d}, J 7.3,3-\mathrm{OH}$), 3.29-3.36 $(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.58(1 \mathrm{H}, \mathrm{ddd}, J 11.3,8.4$ and $4.6,1-\mathrm{CHH}), 4.02$ $(1 \mathrm{H}$, ddd, $J 11.3,4.3$ and $4.1,1-\mathrm{CHH}), 4.47(1 \mathrm{H}$, dd, $J 7.3$ and $3.2,3-\mathrm{H}), 5.53(1 \mathrm{H}, \mathrm{d}, J 8.6, \mathrm{NH}), 6.97(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph})$.

(3R,4S)-5-(tert-Butyldimethylsiloxy)-4-[N-(2,4,6-trimethyl-phenylsulfonyl)amino]pent-1-yn-3-ol 59

By a procedure identical with that described for the preparation of $\mathbf{5 6}$ from $\mathbf{5 4}, 57(1.64 \mathrm{~g}, 3.39 \mathrm{mmol})$ was converted into the title compound 59 ($1.32 \mathrm{~g}, 95 \%$ yield). 92% ee ($3 R, 4 S$) by HPLC [Daicel Chiralcel OD, n-hexane:propan-2-ol $=95: 5$ $\left(0.5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\right),(3 S, 4 R)$-isomer $18.6 \mathrm{~min},(3 R, 4 S)$-isomer 20.5 min]; colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}, 412.1975$. $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{NO}_{4} \mathrm{SSi}$ requires $\left.M+\mathrm{H}, 412.1978\right]$; $[a]_{\mathrm{D}}^{26}+13.3$ (c 0.813 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.02(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.03(3 \mathrm{H}$, s, SiMe), $0.86\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right), 2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.50(1 \mathrm{H}, \mathrm{d}$, $J 1.9,1-\mathrm{H}), 2.66(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 3.25(1 \mathrm{H}, \mathrm{d}, J 9.5, \mathrm{OH})$, $3.31-3.39(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.61(1 \mathrm{H}, \mathrm{dd}, J 10.3$ and $4.6,5-\mathrm{CHH})$, $4.04(1 \mathrm{H}, \mathrm{dd}, J 10.3$ and $3.2,5-\mathrm{CH} H), 4.37(1 \mathrm{H}$, ddd, $J 9.5,3.2$ and $1.9,3-\mathrm{H}), 5.35(1 \mathrm{H}, \mathrm{d}, J 9.2, \mathrm{NH}), 6.96(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}) ; \mathrm{m} / \mathrm{z}$ (FAB) $412\left(\mathrm{MH}^{+}\right.$, base peak), 354, 280, 173, 167, 119, 89 and 73.

General procedure for the preparation of 1,3-oxazolidin-2-ones

 (60, 62, 64, and 65)(4S,5S)-5-Ethynyl-4-isopropyl-1,3-oxazolidin-2-one 60. To a stirred suspension of $\mathrm{NaH}(9.6 \mathrm{mg}, 0.4 \mathrm{mmol})$ in DMF $\left(2 \mathrm{~cm}^{3}\right)$ under argon was added $43(60 \mathrm{mg}, 0.2 \mathrm{mmol})$ in a mixed solvent of dry THF $\left(1 \mathrm{~cm}^{3}\right)$ and DMF $\left(1 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 1 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(3 \mathrm{~cm}^{3}\right)$ was added to the mixture at $-78^{\circ} \mathrm{C}$, and the whole was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with water, and dried over
MgSO_{4}. Usual workup followed by flash chromatography over silica gel with n-hexane-EtOAc (3:1) gave the title compound 60 ($22 \mathrm{mg}, 72 \%$ yield) as a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 154.0872. $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NO}_{2}$ requires $M+\mathrm{H}, 154.0868$]; $\left.[a]_{\mathrm{D}}^{24}-48.2\left(c 1.29 \text { in }^{(H C l}\right)_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.97(3 \mathrm{H}, \mathrm{d}$, $J 6.8$, CMe), 0.98 ($3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CMe}), 1.70-1.87(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Me}_{2} \mathrm{CH}\right), 2.69(1 \mathrm{H}, \mathrm{d}, J 2.4, \mathrm{C} \equiv \mathrm{CH}), 3.60-3.66(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$, $4.83(1 \mathrm{H}, \mathrm{dd}, J 5.9$ and $2.4,5-\mathrm{H}), 7.17(1 \mathrm{H}, \mathrm{br} s, \mathrm{NH}) ; m / z$ (FAB) $154\left(\mathrm{MH}^{+}\right.$, base peak), 137, 95, 81, 69, 57, 55 and 43.
(4S,5S)-5-Ethynyl-4-isopropyl- N -(2,4,6-trimethylphenyl-sulfonyl)-1,3-oxazolidin-2-one 61. To a stirred suspension of $\mathrm{NaH}(1.9 \mathrm{mg}, 0.078 \mathrm{mmol})$ in DMF $\left(0.2 \mathrm{~cm}^{3}\right)$ were added $1,3-$ oxazolidin-2-one $60(10 \mathrm{mg}, 0.065 \mathrm{mmol})$ in THF ($0.1 \mathrm{~cm}^{3}$) and 2,4,6-trimethylphenylsulfonyl chloride ($16 \mathrm{mg}, 0.072 \mathrm{mmol}$) in THF $\left(0.1 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ under argon. The mixture was stirred for 1 h at this temperature. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(1 \mathrm{~cm}^{3}\right)$ was added to the mixture, and the whole was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with water, and dried over MgSO_{4}. Usual workup followed by flash chromatography over silica gel with n-hexane-EtOAc ($10: 1$) gave the title compound 61 (10 $\mathrm{mg}, 46 \%$ yield) as colourless crystals, $\mathrm{mp} 156-158^{\circ} \mathrm{C}$ [from n-hexane- $\mathrm{Et}_{2} \mathrm{O}$ (3:1)] [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 336.1273. $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{~S}$ requires $\left.M+\mathrm{H}, 336.1269\right]$; $[\alpha]_{\mathrm{D}}^{25}+208(c 0.488$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.06(6 \mathrm{H}, \mathrm{d}, J 7.0,2 \times \mathrm{CMe})$, $2.32(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.55-2.67\left(1 \mathrm{H}, \mathrm{m}, \mathrm{Me}_{2} \mathrm{CH}\right), 2.69(1 \mathrm{H}, \mathrm{d}$, $J 2.4, \mathrm{C}=\mathrm{CH}), 2.72(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe})$, $4.47(1 \mathrm{H}, \mathrm{dd}, J 3.0$ and $1.9,4-\mathrm{H}), 4.90(1 \mathrm{H}, \mathrm{dd}, J 2.4$ and $1.9,5-\mathrm{H}), 6.99(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph})$; m / z (FAB) 336 (MH^{+}, base peak), 183, 137 and 119.
(4S,5R)-5-Ethynyl-4-isopropyl-1,3-oxazolidin-2-one 62. By а procedure identical with that described for the preparation of the 1,3-oxazolidin-2-one 60 from $\mathbf{4 3}$, the alcohol 44 ($60 \mathrm{mg}, 0.2$ mmol) was converted into the title compound $62(15 \mathrm{mg}, 49 \%$ yield) as a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}, 154.0862$. $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NO}_{2}$ requires $\left.M+\mathrm{H}, 154.0868\right]$; $[a]_{\mathrm{D}}^{24}+41.2$ (c 1.19 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.97(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CMe}), 1.05$ ($3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CMe}$), 2.07-2.20 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Me}_{2} \mathrm{CH}$), $2.70(1 \mathrm{H}, \mathrm{d}$, $J 2.2, \mathrm{C} \equiv \mathrm{CH}), 3.62(1 \mathrm{H}, \mathrm{dd}, J 8.1$ and $7.8,4-\mathrm{H}), 5.25(1 \mathrm{H}, \mathrm{dd}$, $J 8.1$ and 2.2, $5-\mathrm{H}$), 6.82-6.95 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NH}$); m / z (FAB) 154 $\left(\mathrm{MH}^{+}\right.$, base peak), $137,136,110,107,77$ and 43.
(4S,5R)-5-Ethynyl-4-isopropyl- N -(2,4,6-trimethylphenyl-sulfonyl)-1,3-oxazolidin-2-one 63. By a procedure identical with that described for the preparation of $\mathbf{6 1}$ from $\mathbf{6 0}, \mathbf{6 2}(10 \mathrm{mg}$, $0.065 \mathrm{mmol})$ was converted into the title compound $63(19 \mathrm{mg}$, 87% yield) as colourless crystals, $\mathrm{mp} 189-191^{\circ} \mathrm{C}$ [from $\mathrm{Et}_{2} \mathrm{O}-$ CHCl_{3} (5:1)] [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 336.1263. $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{~S}$ requires $M+\mathrm{H}, 336.1269]$; $[a]_{\mathrm{D}}^{23}+170$ (c 0.637 in CHCl_{3}); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.22(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CMe}), 1.30(3 \mathrm{H}, \mathrm{d}$, $J 7.3, \mathrm{CMe}), 2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.48-2.62\left(1 \mathrm{H}, \mathrm{m}, \mathrm{Me}_{2} \mathrm{CH}\right)$, $2.65(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 2.85(1 \mathrm{H}, \mathrm{d}, J 2.2, \mathrm{C} \equiv \mathrm{CH}), 4.49(1 \mathrm{H}$, dd, $J .3$ and $2.4,4-\mathrm{H}), 5.24(1 \mathrm{H}$, dd, $J 7.3$ and $2.2,5-\mathrm{H}), 6.98$ $(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}) ; m / z(\mathrm{FAB}) 336\left(\mathrm{MH}^{+}\right.$, base peak), 183, 137 and 119.
(4S,5S)-4-[(tert-Butyldimethylsiloxy)methyl]-5-ethynyl-1,3-oxazolidin-2-one 64. By a procedure identical with that described for the preparation of the 1,3-oxazolidin-2-one $\mathbf{6 0}$ from 43, the alcohol $52(127 \mathrm{mg}, 0.316 \mathrm{mmol})$ was converted into the title compound $\mathbf{6 4}(31 \mathrm{mg}, 38 \%$ yield) as a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 256.1364. $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NO}_{3}$ Si requires $M+\mathrm{H}, 256.1369] ;[a]_{\mathrm{D}}^{23}-65.7\left(c 0.280\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.07\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right), 2.67(1 \mathrm{H}, \mathrm{d}$, $J 1.9, \mathrm{C} \equiv \mathrm{CH}), 3.60-3.72\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 3.93(1 \mathrm{H}, \mathrm{ddd}, J 5.1$, 5.1 and $4.9,4-\mathrm{H}), 5.00(1 \mathrm{H}$, dd, $J 4.9$ and $1.9,5-\mathrm{H}), 6.53(1 \mathrm{H}$, br s, NH); m / z (FAB) $256\left(\mathrm{MH}^{+}\right.$, base peak), 240, 198, 168, 147 , 137, 115, 89, 75, 73 and 59.
(4S,5R)-4-[(tert-Butyldimethylsiloxy)methyl]-5-ethynyl-1,3-oxazolidin-2-one 65. By a procedure identical with that
described for the preparation of the 1,3-oxazolidin-2-one $\mathbf{6 0}$ from 43, the alcohol 53 ($201 \mathrm{mg}, 0.5 \mathrm{mmol}$) was converted into the title compound $\mathbf{6 5}$ ($68 \mathrm{mg}, 53 \%$ yield) as a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 256.1374. $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{Si}$ requires $M+\mathrm{H}, 256.1369] ;[a]_{\mathrm{D}}^{23}-34.4\left(c 0.194 \mathrm{in} \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.08(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.09(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.90(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CMe}_{3}\right), 2.69(1 \mathrm{H}, \mathrm{d}, J 2.2, \mathrm{C}=\mathrm{CH}), 3.79(1 \mathrm{H}, \mathrm{dd}, J 10.3$ and 7.8 , $\mathrm{OCH} \mathrm{H}), 3.83(1 \mathrm{H}, \mathrm{dd}, J 10.3$ and $4.9, \mathrm{OCH} H), 3.96(1 \mathrm{H}$, ddd, $J 7.8,7.8$ and $4.9,4-\mathrm{H}), 5.30(1 \mathrm{H}$, dd, $J 7.8$ and $2.2,5-\mathrm{H}), 5.76-$ 5.87 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NH}$); m / z (FAB) 256 (MH^{+}, base peak), 240, 198, $168,154,137,115,105,89,75,73$ and 59.

General procedure for the aziridination of ethynyl amino alcohols (43, 44, 46, 48, 49, 50, 54, 56, 57, and 59) under Mitsunobu conditions (Table 1)
($2 R, 3 S$)- N -(tert-Butoxycarbonyl)-3-isopropyl-2-(2-trimethylsilylethynyl)aziridine 66 from 43 (Table 1, entry 1). To a stirred solution of the amino alcohol $43(300 \mathrm{mg}, 1 \mathrm{mmol})$ and triphenylphosphine ($393 \mathrm{mg}, 1.5 \mathrm{mmol}$) in dry THF was added dropwise a solution of diethyl azodicarboxylate (40% in toluene; $0.601 \mathrm{~cm}^{3}, 1.5 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 30 min at room temperature. Concentration under reduced pressure followed by flash chromatography over silica gel with n-hexane-EtOAc (20:1) gave the title compound 66 (269 $\mathrm{mg}, 96 \%$ yield) as a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 282.1887. $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{Si}$ requires $\left.M+\mathrm{H}, 282.1889\right]$; $[a]_{\mathrm{D}}^{28}-128$ (c 1.03 in CHCl_{3}); $\delta_{\mathrm{H}}^{2}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.16\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right)$, 1.01 ($3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CMe}$), 1.16 ($3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CMe}$), 1.44 ($9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CMe}_{3}\right), 1.50-1.68\left(1 \mathrm{H}, \mathrm{m}, \mathrm{Me}_{2} \mathrm{C} H\right), 2.14(1 \mathrm{H}, \mathrm{dd}, J 9.2$ and $6.2,3-\mathrm{H}), 2.98(1 \mathrm{H}, \mathrm{d}, J 6.2,2-\mathrm{H}) ; \mathrm{m} / \mathrm{z}(\mathrm{FAB}), 282\left(\mathrm{MH}^{+}\right), 281$, 226 (base peak), 181, 73 and 57.
(2S,3S)-N-(tert-Butoxycarbonyl)-3-isopropyl-2-(2-trimethylsilylethynyl)aziridine 67 (Table 1, entry 2). A colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 282.1894. $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{Si}$ requires $M+\mathrm{H}, 282.1889] ;[a]_{\mathrm{D}}^{27}+25.4\left(c 0.906\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.16\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 1.01(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CMe}), 1.02$ ($3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CMe}$), $1.37-1.49\left(1 \mathrm{H}, \mathrm{m}, \mathrm{Me}_{2} \mathrm{CH}\right), 1.50(9 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CMe}_{3}\right), 2.43(1 \mathrm{H}, \mathrm{dd}, J 7.3$ and $3.2,3-\mathrm{H}), 2.73(1 \mathrm{H}, \mathrm{d}, J 3.2$, 2-H); m / z (FAB) $282\left(\mathrm{MH}^{+}\right), 281,226$ (base peak), 181, 73 and 57.
(2R,3S)-N-(tert-Butoxycarbonyl)-2-ethynyl-3-isopropyl-
aziridine 68 (Table 1, entry 5). A colourless oil [Found (CI): $(\mathrm{M}+\mathrm{H})^{+}, 210.1499 . \mathrm{C}_{12} \mathrm{H}_{20} \mathrm{NO}_{2}$ requires $\left.M+\mathrm{H}, 210.1494\right]$; $[a]_{\mathrm{D}}^{28}-106(c) .18$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.02(3 \mathrm{H}, \mathrm{d}$, $J 6.5, \mathrm{CMe}), 1.16(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CMe}), 1.45\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right)$, $1.51-1.68\left(1 \mathrm{H}, \mathrm{m}, \mathrm{Me}_{2} \mathrm{C} H\right), 2.15(1 \mathrm{H}, \mathrm{dd}, J 9.5$ and $6.5,3-\mathrm{H})$, $2.16(1 \mathrm{H}, \mathrm{d}, J 1.9, \mathrm{C} \equiv \mathrm{CH}), 2.98(1 \mathrm{H}, \mathrm{dd}, J 6.5$ and $1.9,2-\mathrm{H})$; $m / z(\mathrm{CI}) 210\left(\mathrm{MH}^{+}\right), 194,182,155,154$ (base peak), 110, 98.
(2S,3S)- N-(tert-Butoxycarbonyl)-2-ethynyl-3-isopropylaziridine 69 (Table 1, entry 6). A colourless oil [Found (CI): 210.1493. $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{NO}_{2}$ requires $\left.M+\mathrm{H}, 210.1494\right] ;[a]_{\mathrm{D}}^{28}-106(c$ 1.18 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.00(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CMe})$, 1.04 ($3 \mathrm{H}, \mathrm{d}, J 6.8$, CMe), $1.36-1.53\left(1 \mathrm{H}, \mathrm{m}, \mathrm{Me}_{2} \mathrm{C} H\right), 1.49$ $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right), 2.24(1 \mathrm{H}, \mathrm{d}, J 1.9, \mathrm{C} \equiv \mathrm{CH}), 2.44(1 \mathrm{H}, \mathrm{dd}, J 7.6$ and $3.2,3-\mathrm{H})$, $2.71(1 \mathrm{H}, \mathrm{dd}, J 3.2$ and $1.9,2-\mathrm{H}) ; \mathrm{m} / \mathrm{z}(\mathrm{CI})$ $210\left(\mathrm{MH}^{+}\right), 194,182,155,154$ (base peak), 110.
(2R,3R)-3-[tert-Butyldimethylsiloxy)methyl]- N-(2,4,6-trimethylphenylsulfonyl)-2-(2-trimethylsilylethynyl)aziridine 70 (Table 1, entry 7). A colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 466.2259. $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{NO}_{3} \mathrm{SSi}_{2}$ requires $\left.M+\mathrm{H}, 466.2267\right]$; $[a]_{\mathrm{D}}^{27}$ $-38.6\left(c 0.273\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-0.05(3 \mathrm{H}, \mathrm{s}$, SiMe), $-0.02(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.15\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 0.81(9 \mathrm{H}, \mathrm{s}$, CMe_{3}), $2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.69(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 3.04(1 \mathrm{H}$, ddd, $J 6.8,5.9$ and $5.4,2-\mathrm{H}), 3.43(1 \mathrm{H}, \mathrm{d}, J 6.8,3-\mathrm{H}), 3.66(1 \mathrm{H}$, dd, $J 11.3$ and $5.9, O C H H), 3.75(1 \mathrm{H}, \mathrm{dd}, J 11.3$ and 5.4 ,

OCHH), $6.96(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}) ; m / z(\mathrm{FAB}) 466\left(\mathrm{MH}^{+}\right), 408,378,229$, 119, 89 and 73 (base peak).
(2R,3R)-3-[(tert-Butyldimethylsiloxy)methyl]-2-ethynyl- N -(2,4,6-trimethylphenylsulfony))aziridine 71 (Table 1, entry 8). A colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}, 394.1870 . \mathrm{C}_{20} \mathrm{H}_{32} \mathrm{NO}_{3}{ }^{-}$ SSi requires $M+\mathrm{H}, 394.1872]$; $[a]_{\mathrm{D}}^{27}-39.7$ ($c 1.21$ in CHCl_{3}); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-0.06(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}),-0.02(3 \mathrm{H}, \mathrm{s}$, SiMe), $0.80\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right), 2.19(1 \mathrm{H}, \mathrm{d}, J 1.9, \mathrm{C} \equiv \mathrm{CH}), 2.30$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), $2.69(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 3.07(1 \mathrm{H}$, ddd, $J 7.0,5.9$ and $5.4,2-\mathrm{H}), 3.40(1 \mathrm{H}, \mathrm{dd}, J 7.0$ and $1.9,3-\mathrm{H}), 3.68(1 \mathrm{H}, \mathrm{dd}$, $J 11.3$ and $5.9, \mathrm{OCHH}), 3.77(1 \mathrm{H}, \mathrm{dd}, J 11.3$ and $5.4, \mathrm{OCH} H)$, $6.96(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}) ; m / z(\mathrm{FAB}) 394\left(\mathrm{MH}^{+}\right), 337,336,306,183,167$, 119 (base peak), 89 and 73.
(2R,3S)-3-[(tert-Butyldimethylsiloxy)methyl]-N-(2,4,6-trimethylphenylsulfonyl)-2-(2-trimethylsilylethynyl)aziridine $\mathbf{7 2}$ (Table 1, entry 9). 91% ee ($2 R, 3 S$) by HPLC [Daicel Chiralcel OD, n-hexane:propan-2-ol $=99: 1\left(0.5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\right),(2 R, 3 S)$ isomer $9.3 \mathrm{~min},(2 S, 3 R)$-isomer 10.2 min]; colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}, 466.2277 . \mathrm{C}_{23} \mathrm{H}_{40} \mathrm{NO}_{3} \mathrm{SSi}_{2}$ requires $M+\mathrm{H}$, 466.2267]; $[a]_{\mathrm{D}}^{29}+35.1\left(c 0.462\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $-0.09(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}),-0.08(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.17\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right)$, $0.80\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right), 2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.71(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe})$, $3.18(1 \mathrm{H}, \mathrm{d}, J 4.3,3-\mathrm{H}), 3.32(1 \mathrm{H}$, ddd, $J 4.3,4.3$ and $3.8,2-\mathrm{H}$), $3.69(1 \mathrm{H}, \mathrm{dd}, J 11.6$ and $4.3, O C H H), 3.76(1 \mathrm{H}, \mathrm{dd}, J 11.6$ and 3.8, OCHH), 6.93 ($2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}$); $m / z(\mathrm{FAB}) 466\left(\mathrm{MH}^{+}\right), 408,378$, $229,119,89$ and 73 (base peak).
(2R,3S)-3-[(tert-Butyldimethylsiloxy)methyl]-2-ethynyl- N -(2,4,6-trimethylphenylsulfonyl)aziridine 73 (Table 1, entry 10). 94% ee $(2 R, 3 S)$ by HPLC [Daicel Chiralcel OD, n-hexane: propan-2-ol $=98: 2\left(0.5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\right),(2 R, 3 S)$-isomer 15.7 min , $\left(2 S, 3 R\right.$)-isomer 17.9 min]; colourless crystals, $\mathrm{mp} 90^{\circ} \mathrm{C}$ (from n-hexane) [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 394.1880. $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{SSi}$ requires $M+\mathrm{H}, 394.1872]$; $[a]_{\mathrm{D}}^{27}+5.94\left(c 0.886\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-0.12(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}),-0.10(3 \mathrm{H}, \mathrm{s}$, SiMe), $0.78\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{3}\right.$), $2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.47(1 \mathrm{H}, \mathrm{d}$, $J 2.4, \mathrm{C} \equiv \mathrm{CH}), 2.71(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 3.17(1 \mathrm{H}, \mathrm{dd}, J 4.3$ and $2.4,3-\mathrm{H}), 3.33(1 \mathrm{H}$, ddd, $J 4.9,4.3$ and $3.5,2-\mathrm{H}), 3.64(1 \mathrm{H}$, dd, $J 11.6$ and $4.9, \mathrm{OCHH}), 3.73(1 \mathrm{H}, \mathrm{dd}, J 11.6$ and $3.5, \mathrm{OCH} H)$, 6.95 ($2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}$); m/z (FAB) $394\left(\mathrm{MH}^{+}\right), 336,306,210,167,157$, 119, 89 and 73 (base peak).

(2S,3S)-3-Isopropyl-2-[2-(methoxycarbonyl)ethynyl]-N-(2,4,6trimethylphenylsulfonyl)aziridine 74

To a stirred solution of the aziridine $\mathbf{3 4}$ ($291 \mathrm{mg}, 1 \mathrm{mmol}$) in dry THF ($2 \mathrm{~cm}^{3}$) was added dropwise LDA (0.5 M in n-hexaneTHF (1:2) $2.4 \mathrm{~cm}^{3}, 1.2 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$ under argon. After stirring for 1 h at this temperature, methyl chloroformate $\left(0.0852 \mathrm{~cm}^{3}, 1.2 \mathrm{mmol}\right)$ was added at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 30 min at this temperature, followed by quenching with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(2 \mathrm{~cm}^{3}\right)$. The whole was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the extract was washed with water and dried over MgSO_{4}. Usual workup followed by flash chromatography over silica gel with n-hexane-EtOAc $(5: 1)$ gave the title compound 74 ($249 \mathrm{mg}, 71 \%$ yield) as colourless crystals, $\mathrm{mp} 75^{\circ} \mathrm{C}$ [from n-hexane- $\mathrm{Et}_{2} \mathrm{O}$ (5:1)] (Found: C, $61.6 ; \mathrm{H}, 6.5$; N , 3.9. $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}$ requires $\left.\mathrm{C}, 61.9 ; \mathrm{H}, 6.6 ; \mathrm{N}, 4.0 \%\right] ;[a]_{\mathrm{D}}^{24}$ $+51.1\left(c 0.951\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.77(3 \mathrm{H}, \mathrm{d}$, $J 6.5$, CMe), $0.92(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CMe}), 1.48-1.61(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Me}_{2} \mathrm{CH}\right), 2.31(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 2.72(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 3.02-3.07$ $(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $3-\mathrm{H}), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.96(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph})$.

(2S,3S)-3-Isopropyl- N-(2,4,6-trimethylphenylsulfonyl)-2-(2trimethylsilylethynyl)aziridine 75

By a procedure similar to that described for the preparation of 74 from 34, the aziridine 34 ($437 \mathrm{mg}, 1.5 \mathrm{mmol}$) was converted into the title compound 75 ($347 \mathrm{mg}, 64 \%$ yield) as a colourless
oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}, 364.1761 . \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{NO}_{2} \mathrm{SSi}$ requires $M+\mathrm{H}, 364.1766] ;[a]_{\mathrm{D}}^{19}+47.4\left(c 1.01\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.18\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 0.76(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CMe}), 0.93$ ($3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{CMe}$), $1.44-1.58\left(1 \mathrm{H}, \mathrm{m}, \mathrm{Me}_{2} \mathrm{CH}\right), 2.30(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CMe}), 2.72(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 2.95-3.00(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $3-\mathrm{H})$, $6.94(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}) ; m / z(\mathrm{FAB}) 364\left(\mathrm{MH}^{+}\right.$, base peak), 348, 229, 181, 180, 167, 119 and 73.

(2R,3S)-3-Isopropyl-2-[2-(methoxycarbonyl)ethynyl]-N-(2,4,6trimethylphenylsulfonyl)aziridine 76

By a procedure identical with that described for the preparation of 74 from 34, the aziridine 35 ($204 \mathrm{mg}, 0.7 \mathrm{mmol}$) was converted into the title compound 76 ($158 \mathrm{mg}, 65 \%$ yield) as a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 350.1433. $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{~S}$ requires $M+\mathrm{H}, 350.1426]$; $[a]_{D}^{22}-82.6$ (c 0.860 in CHCl_{3}); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.85(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CMe}), 1.01(3 \mathrm{H}, \mathrm{d}$, $J 7.0, \mathrm{CMe}), 1.50-1.68\left(1 \mathrm{H}, \mathrm{m}, \mathrm{Me}_{2} \mathrm{CH}\right), 2.32(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe})$, $2.64(1 \mathrm{H}, \mathrm{dd}, J 9.7$ and $7.0,3-\mathrm{H}), 2.69(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe}), 3.43$ ($1 \mathrm{H}, \mathrm{d}, J 7.0,2-\mathrm{H}$), $3.76(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.98(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}) ; m / z$ (FAB) $350\left(\mathrm{MH}^{+}\right.$, base peak), 294, 183, 166, 137, 119, 91, 77 and 55 .

(2R,3S)-3-Isopropyl- N-(2,4,6-trimethylphenylsulfonyl)-2-(2trimethylsilylethynyl)aziridine 77

By a procedure similar to that described for the preparation of 74 from 34, the aziridine 35 ($117 \mathrm{mg}, 0.40 \mathrm{mmol}$) was converted into the title compound 77 ($128 \mathrm{mg}, 88 \%$ yield) as a colourless oil [Found (FAB): $(\mathrm{M}+\mathrm{H})^{+}$, 364.1772. $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{NO}_{2} \mathrm{SSi}$ requires $M+\mathrm{H}, 364.1766] ;[a]_{\mathrm{D}}^{26}-62.4\left(c 0.857\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}}(270 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.14\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 0.81(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CMe}), 0.98$ ($3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{CMe}$), $1.50-1.67\left(1 \mathrm{H}, \mathrm{m}, \mathrm{Me}_{2} \mathrm{CH}\right), 2.31(3 \mathrm{H}, \mathrm{s}$, CMe), $2.52(1 \mathrm{H}, \mathrm{dd}, J 9.7$ and $7.0,3-\mathrm{H}), 2.70(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CMe})$, $3.38(1 \mathrm{H}, \mathrm{d}, J 7.0,2-\mathrm{H}), 6.96(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}) ; m / z(\mathrm{FAB}) 364\left(\mathrm{MH}^{+}\right.$, base peak), $362,348,271,229,181,180,167,119$ and 73.

Acknowledgements

This work was supported in part by The Japan Health Sciences Foundation and Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture of Japan. H. O. is grateful to the Japan Society for the Promotion of Science for Young Scientists.

References

1 For reviews on aziridines and their derivatives, see: (a) A. Padwa and A. D. Woolhouse, in Comprehensive Heterocyclic Chemistry, ed. W. Lwowski, Pregamon Press, Oxford, 1984, vol. 7, pp. 47-93; (b) M. Kasai and M. Kono, Synlett, 1992, 778; (c) D. Tanner, Angew. Chem., Int. Ed. Engl., 1994, 33, 599; (d) H. M. I. Osborn and J. Sweeney, Tetrahedron: Asymmetry, 1997, 8, 1693; (e) C. M. Rayner, Synlett, 1997, 11; (f) T. Ibuka, Chem. Soc. Rev., 1998, 27, 145; (g) R. S. Atkinson, Tetrahedron, 1999, 55, 1519.
2 For recent synthesis of aziridines, see: (a) J. U. Jeong, B. Tao, I. Sagasser, H. Henninges and K. B. Sharpless, J. Am. Chem. Soc., 1998, 120, 6844; (b) T. Ando, S. Minakata, I. Ryu and M. Komatsu, Tetrahedron Lett., 1998, 39, 309; (c) O. Kitagawa, T. Suzuki and T. Taguchi, J. Org. Chem., 1998, 63, 4842; (d) N. J. Church and D. W. Young, J. Chem. Soc., Perkin Trans. 1, 1998, 1475; (e) R. S. Atkinson, T. A. Claxton, I. S. T. Lochrie and S. Ulukanli, Tetrahedron Lett., 1998, 39, 5113.
3 (a) T. Ibuka, K. Nakai, H. Habashita, Y. Hotta, N. Fujii, N. Mimura, Y. Miwa, T. Taga and Y. Yamamoto, Angew. Chem., Int. Ed. Engl., 1994, 33, 652; (b) P. Wipf and P. C. Fritch, J. Org. Chem., 1994, 59, 4875; (c) N. Fujii, K. Nakai, H. Tamamura, A. Otaka, N. Mimura, Y. Miwa, T. Taga, Y. Yamamoto and T. Ibuka, J. Chem. Soc., Perkin Trans. 1, 1995, 1359; (d) P. Wipf and T. C. Henninger, J. Org. Chem., 1997, 62, 1586; (e) H. Aoyama, N. Mimura, H. Ohno, K. Ishii, A. Toda, H. Tamamura, A. Otaka, N. Fujii and T. Ibuka, Tetrahedron Lett., 1997, 38, 7383; (f) A. Toda, H. Aoyama, N. Mimura, H. Ohno, N. Fujii and T. Ibuka, J. Org. Chem., 1998, 63, 7053.

4 (a) J. Åhman and P. Somfai, J. Am. Chem. Soc., 1994, 116, 9781 (b) J. Åhman and P. Somfai, Tetrahedron Lett., 1995, 36, 303; (c) J. Åhman and P. Somfai, Tetrahedron, 1995, 51, 9747; (d) J. Åhman and P. Somfai, Tetrahedron Lett., 1996, 37, 2495; (e) J. Åhman, T. Jarevång and P. Somfai, J. Org. Chem., 1996, 61, 8148; (f) I. Coldham, A. J. Collis, R. J. Mould and R. E. Rathmell, Tetrahedron Lett., 1995, 36, 3557; (g) I. Coldham, A. J. Collis, R. J. Mould and R. E. Rathmell, J. Chem. Soc., Perkin. Trans. 1, 1995, 2739.

5 (a) G. W. Spears, K. Nakanishi and Y. Ohfune, Synlett, 1991, 91 ; (b) D. Tanner and P. Somfai, Bioorg. Med. Chem. Lett., 1993, 3, 2415.

6 (a) T. Hudlicky, J. O. Frazier, G. Seoane, M. Tiedje, A. Seoane,
L. D. Kwart and C. Beal, J. Am. Chem. Soc., 1986, 108, 3755;
(b) T. Hudlicky, G. Seoane and T. C. Lovelace, J. Org. Chem., 1988, 53, 2094; (c) T. Hudlicky, H. Luna, J. D. Price and F. Rulin, J. Org. Chem., 1990, 55, 4683.
7 (a) D.-K. Wang, L.-X. Dai and X.-L. Hou, Chem. Commun., 1997, 1231; (b) A.-H. Li, Y.-G. Zhou, L.-X. Dai, X.-L. Hou, L.-J. Xia and L. Lin, Angew. Chem., Int. Ed. Engl., 1997, 36, 1317; (c) A.-H. Li, Y.-G. Zhou, L.-X. Dai, X.-L. Hou, L.-J. Xia and L. Lin, J. Org. Chem., 1998, 63, 4338.
8 H. Ohno, A. Toda, Y. Miwa, T. Taga, N. Fujii and T. Ibuka, Tetrahedron Lett., 1999, 40, 349.
9 H. Ohno, A. Toda, Y. Miwa, T. Taga, E. Osawa, Y. Yamaoka, N. Fujii and T. Ibuka, J. Org. Chem., 1999, 64, 2992.

10 For a preliminary communication of a portion of this work, see: H. Ohno, A. Toda, N. Fujii and T. Ibuka, Tetrahedron: Asymmetry, 1998, 9, 3929.
11 (a) H. Ohno, K. Ishii, A. Honda, H. Tamamura, N. Fujii,
Y. Takemoto and T. Ibuka, J. Chem. Soc., Perkin. Trans. 1, 1998, 3703; (b) H. Ohno, A. Toda, N. Fujii, Y. Miwa, T. Taga, Y. Yamaoka, E. Osawa and T. Ibuka, Tetrahedron Lett., 1999, 40, 1331; (c) K. Ishii, H. Ohno, Y. Takemoto and T. Ibuka, Synlett, 1999, 228; (d) for a synthesis of vinylaziridines from allylic alcohols bearing an amino group under Mitsunobu conditions, see: H. F. Olivo, M. S. Hemenway, A. C. Hartwig and R. Chan, Synlett, 1998, 247.
12 T. Ibuka, N. Mimura, H. Aoyama, M. Akaji, H. Ohno, Y. Miwa, T. Taga, K. Nakai, H. Tamamura, N. Fujii and Y. Yamamoto, J. Org. Chem., 1997, 62, 999. For the synthesis N-Boc phenylalaninol 18, see the Experimental section.
13 (a) D. B. Denney and S. T. Ross, J. Org. Chem., 1962, 27, 998; (b) for a recent synthesis of stabilized haloylides, see: M. M. Kayser, J. Zhu and D. L. Hooper, Can. J. Chem., 1997, 75, 1315.
14 (a) B. M. Trost and T. P. Klun, J. Org. Chem., 1980, 45, 4256; (b) R. W. Hoffmann, Chem. Rev., 1989, 89, 1841; (c) S. D. Kahn, C. F. Pau, A. R. Chamberlin and W. J. Hehre, J. Am. Chem. Soc., 1987, 109, 650.
15 Enantiomeric purities of ethynylaziridines 34 and 35 have been determined by HPLC with a chiral stationary phase (Chiralcel OD and/or Chiralcel OJ) by comparison with their enantiomers synthesized from D-valinol. Compounds $\mathbf{3 4}$ and $\mathbf{3 5}$ were found to be enantiomerically pure (ee $>98 \%$).
16 T. Ibuka, H. Habashita, A. Otaka, N. Fujii, Y. Oguchi, T. Uyehara and Y. Yamamoto, J. Org. Chem., 1991, 56, 4370.
17 M. J. McKennon, A. I. Meyers, K. Drauz and M. Schwarm, J. Org. Chem., 1993, 58, 3568.

Paper 9/05027B

